
IEMS Vol. 7, No. 3, pp. 204-213, December 2008.

A Genetic Algorithm with a New Repair Process for
Solving Multi-stage, Multi-machine, Multi-product

Scheduling Problems

Pupong Pongcharoen†
Industrial Engineering Department, Faculty of Engineering

Naresuan University, Pitsanulok 65000 THAILAND
E-mail: pupongp@yahoo.com, pupongp@nu.ac.th

Aphirak Khadwilard

Mechanical Engineering Department, Faculty of Engineering
Rajamangala University of Technology Lanna, Tak Campus, Tak 63000 THAILAND

Christian Hicks

Business School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK

Selected paper from APIEMS 2006

Abstract. Companies that produce capital goods need to schedule the production of products that have complex
product structures with components that require many operations on different machines. A feasible schedule
must satisfy operation and assembly precedence constraints. It is also important to avoid deadlock situations. In
this paper a Genetic Algorithm (GA) has been developed that includes a new repair process that rectifies infeasi-
ble schedules that are produced during the evolution process. The algorithm was designed to minimise the com-
bination of earliness and tardiness penalties and took into account finite capacity constraints. Three different
sized problems were obtained from a collaborating capital goods company. A design of experimental approach
was used to systematically identify that the best genetic operators and GA parameters for each size of problem.

Keywords: Scheduling, Repair Process, Product Structure, Genetic Algorithm, Metaheuristics

1. INTRODUCTION

Sequencing determines the order of tasks based upon
operation and assembly precedence relationships. Sched-
uling is defined as “the allocation of resources over time
to perform a collection of tasks” (Baker, 1974). A sched-
ule specifies sequence and timing, normally expressed as
a set of start and due times (Hicks and Pongcharoen,
2006). Scheduling is a combinatorial optimisation prob-
lem that is classified as an NP hard problem (King and
Spackis, 1980), which means that the amount of computa-
tion required to find solutions increases exponentially
with problem size.

Various assumptions have been made in order to
simplify, formulate and solve scheduling problems. The
most common assumptions can be summarised as follows:
a successor operation is performed immediately after its
predecessor has finished, providing that the machine is

available; each machine can handle only one operation at
a time; each operation can only be performed on one ma-
chine at a time; there is no interruption of operations;
there is no rework; setup and transfer times are of zero or
uniform duration; and tasks are independent.

Production scheduling in the capital goods industry
is difficult for several reasons. Firstly, demand is highly
variable and uncertain. The products (e.g. steam turbine
generators, power station boilers and transformer) are
complex and are produced from components that require
a large number of operations on machines with high capi-
tal and operating cost (which means that high utilisation
is important). There are many operation and assembly
dependency relationships. There are also multiple finite
capacity resource constraints and the performance objec-
tives may vary for different product families. Finally, the
bespoke nature of production leads to large variations in
product mix.

† : Corresponding Author

 A Genetic Algorithm with a New Repair Process for Solving Multi-stage, Multi-machine, Multi-product Scheduling Problems 205

Classical job shop and flow shop scheduling prob-
lems generally consist of a set of independent tasks. This
is known as single stage scheduling (He and Hui, 2007)
which means that there are no precedence constraints
arising from assembly requirements (Blazewicz et al.,
1996a). Scheduling is important because companies seek
to minimise lead-times and simultaneously achieve high
resource utilisation.

There is a comprehensive literature related to classi-
cal flow and job shop scheduling (see for example Garey
et al., 1976; Graham et al., 1979; Reisman et al., 1994;
Ruiz and Maroto, 2005). However, there is very little
research that has considered multi-stage, multi-product
scheduling problems with finite capacity multi-resource
constraints. Reeja and Rajendran (2000) highlighted the
lack of production scheduling research that has taken ac-
count of assembly relationships and constraints. Fry et al.
(1989) recognized that there is a strong relationship be-
tween product structure and sequencing rule performance.

The objectives of this paper are to: i) describe a Ge-
netic Algorithm based scheduling tool (GAST) for sched-
uling multiple products with deep and complex product
structures; ii) explain a new repair process embedded
within the GAST that rectifies infeasible schedules that
may be generated during evolution process; iii) demon-
strate the use of an effective experimental design for in-
vestigating the influence of problem size on the GA pa-
rameter settings using three representative problems that
were obtained from a collaborating capital goods com-
pany.

The next section of this paper presents the literature
review related to Genetic Algorithms. Section 3 explains
the Genetic Algorithm that was developed to schedule the
manufacture of complex products. Section 4 presents the
experimental design and provides an analysis of the re-
sults. These are followed by the conclusions, which ap-
pear in section 5.

2. LITERATURE REVIEW

There are two categories of optimisation algorithm:
conventional and approximation optimisation algorithms
(Nagar et al., 1995; Blazewicz et al., 1996a). Conven-
tional optimisation algorithms are usually based upon
mathematical models. Examples include Integer Linear

Programming, Branch and Bound and Dynamic Pro-
gramming. Approximation optimisation algorithms are
based upon constructive approaches (e.g. dispatching
rules, etc.) and/or stochastic search techniques (e.g. Simu-
lated Annealing, Taboo Search, Genetic Algorithm, Parti-
cle Swarm Optimization, Ant Colony Optimisation, Shuf-
fled Frog Leaping and Artificial Immune Systems).

Genetic Algorithms (GA) have several advantages.
GA deal with a coding of the problem instead of deci-
sion variables (Syarif et al., 2002). They require limited
domain knowledge (to represent the problem in terms of
genes and chromosomes and also an objective function
for evaluating the fitness of chromosomes) and use sto-
chastic transition rules to guide the search (Goldberg,
1989). GA perform multiple directional search using a
set of candidate solutions, whereas most conventional
methods conduct single directional search (Gen and
Cheng, 1997).

There are many research articles related to GA and
their applications in the fields of production and opera-
tions management. Aytug et al. (2003) reviewed more
than 110 GA articles published between 1996~2002. They
found that GA parameters and operators had mostly been
selected in an ad hoc fashion, rather than using a system-
atic design of experiments approach. A survey conducted
by Chaudhry and Luo (2005) stated that 67.98% of 178
GA related research articles had used GA to solve sched-
uling or facility layout problems.

Much of the scheduling literature relates to classical
job shop or flow shop problems and ignores assembly
operations (Reeja and Rajendran, 2000). Multi-stage,
multi-machine, multi-product scheduling (MMMS) is the
allocation of resources over time to perform a collection
of operations required by components, which are subse-
quently sub-assembled and assembled into products in
accordance with the product structure. The number of
levels of product structure indicates the number of stages
of assembly precedence relationships. The leaf nodes
within the product structure represent components. Since
some components may require a number of operations to
be performed on various machines, the sequence of op-
erations for each component must consider the operation
precedence constraint inherent its manufacturing process.

Figure 1 shows an example of a typical product
structure obtained from a collaborating company engaged
in the capital goods industry. It can be seen that a final

Figure 1. A typical product structure from a collaborating company (Hicks and Pongcharoen, 2006).

206 Pupong Pongcharoen·Aphirak Khadwilard·Christian Hicks

product (P) required assemblies, subassemblies, parts and
components (C), in each of which a sequence of opera-
tions (O) to be performed on multiple machines (M) is
specified. In order to formulate the multi-stage, multi-
machine, multi-product scheduling (MMMS) model, the
following notation is introduced for using in the model.

Notation:
i operation ith (i = 1, ⋯, O)
j part or component jth (j = 1, ⋯, C)
k final product kth (k = 1, ⋯, P)
m machine mth (m = 1, ⋯, M)
Rm ready time of machine mth (date)
Ck completion time of product kth (date)
Dk due date of product kth (date)
Cjk completion time of component jth in product kth (date)
Djk due date of component jth in product kth (date)
Ek earliness duration of product kth (days)
Ejk earliness duration of component jth in product kth

(days)
Tk tardiness duration of product kth (days)
SUijkm setup time of operation ith for component jth in

product kth on machine mth (minute)
STijkm start time of operation ith for component jth in

product kth on machine mth (minute)
PTijkm processing time of operation ith for component jth

in product kth on machine mth (minute)
FTijkm finishing time of operation ith for component jth in

product kth on machine mth (minute)
TTijkm transfer time of operation ith for component jth in

product kth on machine mth (minute)
Xijkabcm 1 if operation ith for component jth in product kth

precedes operation ath for component bth in product
cth on machine mth; and 0 otherwise (minute)

Pe earliness penalty (currency unit per day)
Pt tardiness penalty (currency unit per day)
S(x) set of child items of item x
Sh working hour per shift (minutes per shift)

The scheduling objective is based on the Just in

Time philosophy that aims to minimise the combination
of earliness penalties for components and final products
and tardiness penalties of final products. The mathemati-
cal model for multi-stage multi-machine multi-product
scheduling (MMMS) problem is as follows:

Penalty cost

= ∑∑ ∑ ∑
= = = =

++
C

j

P

k

P

k

P

k
kkjk TPtEPeEPe

1 1 1 1

)()()((1)

Subject to:
STijkm ≥ Rm ∀i, j, k, m (2)
FTijkm = STijkm + SUijkm + PTijkm + TTijkm ∀i, j, k, m (3)
Cjk ≥ FTijkm ∀i, j, k, m (4)
Ejk = (Djk - Cjk)/Sh ∀j, k (5)
Ek = (Dk - Ck)/Sh ∀k (6)

Tk = (Ck - Dk)/Sh ∀k (7)
STihkm - STijkm ≥ SUijkm + PTijkm + TTijkm

∀i, k, m, j∈ S(h) (8)
STgjkm - STijkm ≥ SUijkm + PTijkm + TTijkm

∀j, k, m, g = i + 1 (9)
Xijkabcm + Xabcijkm = 1 ∀a, b, c, i, j, k, m (10)

Xijkabcm ∈ {0, 1} ∀a, b, c, i, j, k, m (11)
Ejk, Ek, Tk ≥ 0 ∀j, k (12)
STijkm, Rm ≥ 0 ∀i, j, k, m (13)
FTijkm, STijkm, SUijkm, PTijkm, TTijkm ≥ 0 ∀i, j, k, m (14)

This mathematical model was derived to describe the
MMMS problem considered in this research. The objec-
tive function (1) contains three parts: i) an earliness pen-
alty for components; ii) an earliness penalty for final
products; and iii) a tardiness penalty for final products.
Constraint (2) ensures that the start time of all operations
is not earlier than the time the machines are ready. Con-
straint (3) makes sure that the finishing time for each op-
eration is determined by the start, setup, machining and
transfer times. Constraint (4) ensures that the completion
time for each component is not before the finishing time.
The number of days earliness and tardiness for compo-
nents and final products are defined by constraints (5), (6)
and (7). Part precedence constraints relating to the prod-
uct structure are defined by constraint (8). For example, if
part j is child item of part h, then the start time of the par-
ent part (STihkm) minus the start time of the child item
(STijkm) should be greater or equal to the sum of setup,
processing and transfer times for the child item. Con-
straint (9) makes sure that the operation precedence con-
straints within a component are satisfied. For example, if
a successor operation (g) is performed after its predeces-
sor operation (i) is finished, the start time of the successor
operation (STgjkm) minus the start time of the predecessor
operation (STijkm) should be greater or equal to the sum of
setup, processing and transfer times of the predecessor
operation. Constraint (10) ensures that only one operation
can be performed on a machine using the decision vari-
ables defined by constraints in (11). Constraints (12)-(14)
guarantee non-negative values for those defined variables.

There is only limited research that relates to this multi
-stage multi-machine multi-product scheduling (MMMS)
problem. Pongcharoen et al. (2004) described a Genetic
Algorithm tool that was developed for solving the MMMS
problem and reported that the schedules obtained from
GA outperformed the schedules obtained from a collabo-
rating company. Pongcharoen et al. (2002) investigated
the significance of the proposed repair process and found
the best values for GA parameters using regression analy-
sis. However, the computational experiments conducted
in these papers ignored the genetic operations. The repair
process used consisted of four steps: i) operation prece-
dence adjustment; ii) part precedence adjustment; iii)
timing assignment; and iv) deadlock adjustment. The part
precedence adjustment was designed to satisfy product
structure constraints i.e. an assembly requires all its sub-
assemblies and components to be complete before it can

 A Genetic Algorithm with a New Repair Process for Solving Multi-stage, Multi-machine, Multi-product Scheduling Problems 207

be produced. A deadlock situation may arise when there is
a conflict between operation and part precedence con-
straints for different items that both require a common
resource (Pongcharoen et al., 2002).

Previous research relating to the multi-stage multi-
machine multi-product scheduling (MMMS) problem has
not provided an exact mathematical formulation of the
problem as outlined above. Chen and Ji (2007) applied a
mixed integer programming method to solve a simple
MMMS problem. Due to the limitation of their proposed
method, the numerical experiments were based on a
small-size problem that consisted of 2 final products with
a requirement for 21 operations to manufacture 21 items
(excluding final products). Some of the components were
duplicated within the product structure. Each item only
required one operation. Operation precedence constraints,
setup and transfer times were ignored in their formulation.

3. GENETIC ALGORITHM FOR MMMS

The Genetic Algorithm mechanism starts by encod-
ing the problem to produce a list of genes. The genes are
represented by either numeric (binary or real), or alpha-
numeric characters. Blazewicz et al. (1996b) suggested
that the binary chromosome representation is often un-
suitable for combinatorial optimization problems because
it is very difficult to represent solutions. Therefore nu-
meric or alphanumeric coding is often used. The next step
is to randomly combine genes to produce a population of
chromosomes, each of which represents a possible solu-
tion. Genetic operations (crossover and mutation) are next
performed on chromosomes, which are randomly selected
from the population as parents to produce offspring. A
fitness function (objective function) is used to measure
the chromosomes’ fitness value, from which the probabil-
ity of their survival is determined. The most famous proc-
ess is the ‘Roulette Wheel’ (Goldberg, 1989) which may
also be used for chromosome selection. The GA process
is repeated until a termination condition is satisfied.

In this paper, the general Genetic Algorithm de-
scribed by Goldberg (1989) was modified to include a
new repair process for scheduling the manufacture of
complex products in the multi-stage multi-machine envi-
ronment. A schematic of the Genetic Algorithm based
scheduling tool (GAST) is shown in Figure 2. It includes
the following steps: i) chromosome presentation and ini-
tialisation; ii) a repair process; iii) fitness evaluation; iv)
roulette wheel selection; v) a check of the termination
conditions; and vi) genetic operations (crossover and mu-
tation). The GAST program includes a graphic user inter-
face and graphical outputs (e.g. Gantt charts). The pro-
gram consists of nearly 10,000 lines of TCL program-
ming language code (Ousterhout, 1994).

3.1 Chromosome Representation and Initialisation

In this research the operations on each part were en-

coded into genes represented by alphanumeric strings.
They had two parts: a part code (P) and an operation (O)
number (see Figure 3). All the genes were randomly se-
quenced to generate a chromosome. This was repeated to
generate a population of the specified size. It should be
emphasized that the chromosome representation consid-
ered in this work was not separated into sub-chromosomes,
which had been the approach adopted by previous re-
search by the authors (Pongcharoen et al., 2002 and 2004).
The undivided chromosome used was beneficial to the
repair process that is described in the next sub-section.

Figure 2. Structure of the GA based Scheduling Tool

(GAST).

Figure 3. Chromosome representation.

3.2 Repair Process

The processes of chromosome initialisation and ge-
netic operations within the evolution procedure within the
GA may produce infeasible chromosomes (schedules)
that represent impractical solutions that contravene con-
straints. There are three ways to deal with infeasible solu-
tions: i) discard them; ii) apply a high penalty in the fit-
ness function so that they are unlikely to survive; or iii)
repair them (Blum and Roli, 2003). Discarding infeasible
solutions or applying a high penalty is only an option
when a large proportion of the population is feasible.
Otherwise, the GA process could be terminated if all
chromosomes in the population are infeasible. Several
researchers have used a repair process for rectifying in-
feasible chromosomes in timetabling research (e.g. Cal-
deira and Agostinho, 1997; Colorni et al., 1998) and
scheduling research (Pongcharoen et al., 2004). The re-

208 Pupong Pongcharoen·Aphirak Khadwilard·Christian Hicks

pair processes are problem specific due to differences
between problem domains, chromosome representation,
structures of the solution space and the nature of con-
straints. The undivided chromosome representation used
in this work allowed a new compact repair process to be
developed that has only two stages: i) part precedence
adjustment; and ii) operation precedence adjustment. These
processes are described in the following sub-sections.

3.2.1 Part Precedence Adjustment

In previous research part precedence adjustment was
based upon re-sequencing based upon the level of a part
within the product structure. In this research part prece-
dence adjustment was based upon the assembly lines de-
fined in its product structure. For example, if there is a
product structure (e.g. the product structure in Figure 3),
part number 1, 2 and 3 require one operation whilst the
remaining parts (part no. 4, 5, 6 and 7) require two opera-
tions. The process of checking and reordering parts was
based on four assembly lines specified in the product
structure. Figure 4 shows an example of checking and
reordering parts in the first assembly line. The process
began by selecting genes involved in the first assembly
line for precedence checking regarding to the assembly
line. If the selected genes had been in the wrong order
(infeasible), then the selected genes are reordered based
on its assembly requirement and finally replaced back to
the positions they are selected but in a new feasible se-
quence. This process was repeated until all assembly lines
in the product structure were considered.

Figure 4. Example of the new part precedence adjustment.

The part precedence adjustment described allows the

repair process to always avoid the deadlock situations that
arose in previous research. This means that there was no
conflict arising from operation and part precedence con-
straints. The deadlock adjustment was therefore excluded
from the repair process proposed as it was unnecessary.
The new repair process is therefore easier and requires
fewer steps than those used in previous research. It is
therefore more computationally efficient.

3.2.2 Operation Precedence Adjustment

The process of operation precedence adjustment was
applied to each part that required two or more operations.

For example, the product structure shown in Figure 3 has
four parts (part no. 4, 5, 6 and 7) that required two opera-
tions for each part. Figure 5 shows an example of check-
ing and reordering of the two operations required for part
number 4. The genes corresponding to the operations on
each part are identified and the order of operations is
checked to ensure that is satisfies operation precedence
constraints. If the selected genes are in the wrong order,
then the selected genes are reordered in a new sequence.
The process is repeated until the operation precedence
constraints for all parts are satisfied.

Figure 5. Example of operation precedence adjustment.

3.3 Fitness Function

The next stage was to measure the fitness of the
chromosomes. The quality of schedules was evaluated by
using the fitness (objective) function given in Equation
(1), which aggregated the penalty cost arising from earli-
ness and tardiness.

3.4 Roulette Wheel Selection

This stage produced a new generation with the same
population size as the initial population. The roulette
wheel (Goldberg, 1989) approach was used for chromo-
some selection. It used a random number generator over
the range 0-1 (Wichmann and Hill, 1982). The probability
of survival and number of replicates of a chromosome in
the next generation was determined by its fitness. The GA
process was repeated until the termination criterion was
satisfied.

3.5 Genetic Operations: Crossover and Mutation

There are two types of genetic operator: crossover
and mutation. A crossover operator generally combines
the characteristics of two parents to produce an offspring,
whilst mutation usually produces random change in one
chromosome. Many crossover and mutation operators
have been developed and reviewed in the literature (see
for example Pongcharoen et al., 2001, which considered a
comprehensive list). In this research, the nine crossover
and nine mutation operators shown in Table 1 were con-
sidered.

A Genetic Algorithm requires parameters and opera-
tors to be specified. There is no particular configuration
that can guarantee to find the best solution for different
problem sizes or domains. The configuration of GA struc-

 A Genetic Algorithm with a New Repair Process for Solving Multi-stage, Multi-machine, Multi-product Scheduling Problems 209

ture should therefore be systematically investigated through
using a design of experiments approach (Montgomery,
2001), which is described in the next section.

Table 1. Crossover and mutation operators.

Crossover operators (COP) Mutation operators (MOP)

Enhanced edge recombina-
tion (EERX)

Enhanced 2-operation ran-
dom swap (E2OR)

Order crossover (OX) Inverse mutation (IM)

Partially mapped crossover
(PMX)

Shift operation mutation
(SOM)

Cycling crossover (CX) Three operations adjacent
swap (3OAS)

Position based crossover
(PBX)

Three operations random
swap (3ORS)

Maximal preservation cross-
over (MPX)

Two operations adjacent
swap (2OAS)

One point crossover (1PX) Two operations random
swap (2ORS)

Two point centre crossover
(2PCX)

Centre inverse mutation
(CIM)

Mixed-crossover (MXOV) Mixed-mutation (MMUT)

4. EXPERIMENTAL DESIGN AND
ANALYSIS

In this work, three sizes of industrial scheduling
problem adopted from Pongcharoen et al. (2004) were
considered (see Table 2). Data, including production
schedules, product structure relationships, process plans
and resource loading information were obtained from a

collaborating company that was in the make/engineer to
order capital good industry. The first (small) problem,
involved two different products (245 and 451), which had
a combined requirement of twenty-five machining opera-
tions on eight resources with nine assembly operations.
The second and third problems were termed medium and
large, respectively. The large problem involved 118 ma-
chining and 17 assembly operations on 17 resources.
There were interactions and contention for resources.

The aim of the computational experiments was to
investigate the performance of GA and to identify the best
configuration of parameters and operators for the three
problem sizes. The GA parameters and operators were
considered as factors, each of which had three levels (see
Table 3).

The first factor was the combination of the popula-
tion size and the number of generations (P*G), deter-
mined the total number of chromosomes (candidate solu-
tions) created and therefore had a strong influence on the
execution time. A large number of generations with a
large population size increased the amount of search and
increased the probability of finding an optimal solution.
Due to the limitation of execution time and resources
required for each computational run, the combination of
P*G considered in this work was fixed at 2,500 chromo-
somes. The next two factors were the probabilities of
crossover (%C) and mutation (%M). The range consid-
ered for these factors were adopted from previous re-
search (Todd, 1997; Pongcharoen et al., 2002). Finally,
nine crossover (COP) and nine mutation operations
(MOP) shown in Table 1 were considered as last two fac-
tors.

With these experimental factors and levels, a full
factorial experimental design would require 2,187 (3x3x
3x9x9) computational runs for a single replication. In
order to reduce this, a novel experimental design was

Table 2. Industrial scheduling problem.

Characteristics of scheduling problems
Problem
number

Part
number Number of

Products
Number of

Components
Machining/Assembly

Operation
Number of
Resources

Levels of
product structure

1 245 and 451 2 6 25/9 8 4
2 229 and 451 2 8 57/10 7 4
3 4 and 228 2 12 118/17 17 4

Table 3. Experimental factors and its levels.

Values
Factors Levels

Low (-1) Medium (0) High (+1)
Propulation * Generation (P * G) 3 25 * 100 50 * 50 100 * 25
Probability of Crossover (%C) 3 0.1 0.5 0.9
Probability of Mutation (%M) 3 0.05 0.1 0.15
Crossover operators (COP) 9 See Table 1
Mutation operation (MOP) 9 See Table 1

210 Pupong Pongcharoen·Aphirak Khadwilard·Christian Hicks

adopted to reduce the number of runs required. The pro-
posed design embedded a one-third (33-1) fractional fac-
torial experimental design within the Latin Square ex-
perimental design. The factorial design (see Table 4)
involved nine combination of treatments or settings de-
noted by the alphabet letters A, B, C, ⋯, I. Each com-
bination was then embedded into the Latin Square de-
sign (see Table 5), which was based on the concept of a
blocking experiment (Montgomery, 2001). It can be
seen that each alphabet letter (treatment) was applied
once and only once in each row (mutation) and column
(crossover). Using the proposed experimental design,
the total numbers of runs were reduced from 2,187 to 81
for each replication. This design dramatically reduced
the computational effort by 96%.

Experimental results were obtained from five repli-
cates that used different random seed numbers. The re-
sults were then analysed using a general linear form of the
analysis of variance and main effect plots were produced.
Table 6 shows the F and p values for the main factors for
each problem size. It can be seen that all the main factors
were statistically significant with a 95% confidence inter-
val as they had p values that were less than or equal to
0.05. However, P*G was statistically insignificant for
medium problem. This means that the performance of GA

was dependent upon the configuration of the GA parame-
ters and operators used. It should be noted that the aver-
age execution time were 20, 50 and 130 seconds for the
small, medium and large problem, respectively (using a
PC with AMD 1.3 GHz CPU with 128 MB RAM).

Table 4. The one-third (33-1) fractional factorial design.

Combine P*G %C %M U = 0
A 25/100 0.1 0.05 000
B 25/100 0.5 0.15 012
C 50/50 0.1 0.1 101
D 100/25 0.1 0.15 202
E 25/100 0.9 0.1 021
F 50/50 0.5 0.05 110
G 50/50 0.9 0.15 122
H 100/25 0.5 0.1 211
I 100/25 0.9 0.05 220

In order to identify the appropriate settings of the

significant parameters, main effect plots for the statisti-
cally significant parameters are presented in Figure 6. It
can be seen that, for the small problem, the best results

Table 5. The Latin Square design.

Design CX EERX MPX IPX OX PBX PMX 2PCX MOXV
2OAS A I H G F E D C B
3OAS B A I H G F E D C
2ORS C B A I H G F E D
3ORS D C B A I H G F E

IM E D C B A I H G F
SOM F E D C B A I H G
CIM G F E D C B S I H

E2ORS H G F E D C B A I
MMUT I H G F E D C B A

Table 6. The analysis of variance on three problem sizes.

Problem sizes

Small Medium Large
Source DF F P F P F P
P * G 2 36.46 0.000 1.99 0.138 13.29 0.000
%C 2 4.46 0.012 22.31 0.000 21.56 0.000
%M 2 3.09 0.047 2.87 0.058 7.64 0.001
COP 8 8.17 0.000 35.21 0.000 40.14 0.000
MOP 8 4.71 0.000 2.67 0.007 2.81 I0.005
Seed 4 4.82 0.001 16.8 0.000 19.27 0.000
Error 378
Total 404

 A Genetic Algorithm with a New Repair Process for Solving Multi-stage, Multi-machine, Multi-product Scheduling Problems 211

were obtained from the setting of P*G at 100*25 with
the probabilities of crossover and mutation set at 0.5 and
0.15 respectively. For the medium problem, the best
configuration was 50*50, 0.9 and 0.1, respectively.
Whilst the best setting for the large problem was found
to be at 50*50, 0.9 and 0.1, respectively. These results
indicated that the best GA configurations are problem
specific and are influenced by the structure of the prob-
lem domain, the size of the solution space and the nature
of the constraints.

(a) Small problem

(b) Medium problem

(c) Large problem

Figure 6. Main Effect Plot of the GA parameters.

Main effect plots for both statistically significant op-

erators are presented in Figure 7. This suggested that the
best crossover operators for small, medium and large size
problems were MPX, MPX and OX respectively. For

mutation, the appropriate operators were 3ORS, CIM and
MMUT. It can be concluded that the efficiency of GA
operators were differentiated according to the size of the
scheduling problem.

(a) Small problem

(b) Medium problem

(c) Large problem

Figure 7. Main Effect Plot of the GA operators.

Even though the efficiency of the GA operators

was different for the various problem sizes considered, it
was worth investigating which operator generally per-
formed best. Table 7 shows the mean and standard de-
viation of the penalty costs associated with the sched-
ules obtained for the different problems. When consider-
ing the best and the second best performance of both
crossover and mutation operators for each problem sizes,
the maximal preservation crossover (MPX) and the
mixed mutation (MMUT) operators were found to help
the GA process to achieve the lowest mean penalty costs.

212 Pupong Pongcharoen·Aphirak Khadwilard·Christian Hicks

5. CONCLUSIONS

This paper described the Genetic Algorithm based
Scheduling Tool (GAST) for solving the multi-stage
multi-machine multi-product scheduling (MMMS) prob-
lem. A mathematical model of MMMS problem was pro-
posed. The model considered setup and transfer times and
the operation precedence constraints within each compo-
nent, which had been ignored by previous research. The
proposed algorithm included a new repair process that
was embedded within the proposed GA for rectifying
infeasible schedules that were generated in the evolution
process. A new repair process was used that always
avoided deadlock, which was a problem in previous re-
search. The algorithm minimises the combination of
earliness and tardiness penalties with finite resource ca-
pacity. The GAST was applied to solve three representa-
tive problems obtained from a collaborating capital goods
company.

The computational experiments were aimed to inves-
tigate the appropriate settings of Genetic Algorithm pa-
rameters and mechanisms for various problem sizes using
an advanced experimental design. The proposed design
dramatically decreased the computational time and com-
puting resource required. The analysis of experimental
results obtained from the GAST indicated that all the Ge-

netic Algorithm parameters and mechanisms influenced
the results obtained for all three problem sizes. However,
the efficiency of crossover and mutation operators varied
depending on the problem size. It suggested that the ap-
propriate setting of GA parameters and mechanisms were
dependent on the size and the structure of the solution
space, which was directly related to the problem size.

REFERENCES

Aytug, H., Khouja, M., and Vergara, F. E. (2003), Use of
genetic algorithm to solve production and operation
management problems: a review, International Jour-
nal of Production Research, 41, 3955-4009.

Baker, K. R. (1974), Introduction to Sequencing and
Scheduling, Wiley and Sons, New York.

Blazewicz, J., Domschke, W., and Pesch, E. (1996a), The
job shop scheduling problem: Conventional and new
solution techniques, European Journal of Opera-
tional Research, 93, 1-33.

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., and
Weglarz, J. (1996b), Scheduling Computer and Manu-
facturing Processes, Springer, Berlin.

Blum, C. and Roli, A. (2003), Metaheuristics in combina-

Table 7. The mean and standard deviation of COP and MOP.

Small Medium Large

Mean SD Mean SD Mean SD

Crossover
1PX 15411(6) 937 57000(6) 2284 199811(5) 4571

2PCX 15500(7) 1034 57100(7) 1718 200122(7) 4111
CX 15589(8) 1083 57400(8) 1938 201956(8) 3834

EERX 15067(2) 252 52933(2) 3715 194744(3) 4279
MPX 15067(1) 229 51511(1) 5230 193922(2) 6449

MXOV 15100(3) 294 55622(4) 1995 196789(4) 3677
OX 15133(4) 360 54656(3) 2840 193167(1) 4430
PBX 15956(9) 1283 57667(9) 1822 202356(9) 3837
PMX 15356(5) 889 56911(5) 1923 200000(6) 3999

Mutation
2OAS 15678(9) 1262 55689(5) 2859 198944(8) 5055
2ORS 15356(6) 816 55978(7) 2650 199244(9) 4615
3OAS 15511(7) 1084 56667(9) 2527 198433(6) 5735
3ORS 15033(1) 126 55633(4) 2647 197533(3) 5338
CIM 15244(4) 529 54900(1) 5075 197189(2) 6876

E2ORS 15678(8) 1207 55756(6) 4068 198878(7) 5651
IM 15144(2) 229 56200(8) 2130 198133(4) 4215

MMUT 15211(3) 420 54944(2) 3841 196367(1) 6202
SOM 15322(5) 886 55033(3) 4243 198144(5) 5112

 A Genetic Algorithm with a New Repair Process for Solving Multi-stage, Multi-machine, Multi-product Scheduling Problems 213

torial optimisation: overview and conceptual com-
parison, ACM Computing Surveys, 35(3), 268-308.

Caldeira, J. P. and Agostinho, C. R. (1997), School time-
tabling using genetic search, Proceedings of the
Practice and Theory of Automated Timetabling,
University of Toranto, Toronto, 115-122.

Chen, K. and Ji, P. (2007), A mixed integer programming
model for advanced planning and scheduling (APS),
European Journal of Operational Research, 181(1),
515-522.

Chaudhry, S. S. and Luo, W. (2005), Application of ge-
netic algorithms in production and operation man-
agement: a review, International Journal of Produc-
tion Research, 43, 4083-4101.

Colorni, A., Dorigo, M., and Maniezzo, V. (1998), Meta-
heuristics for high school timetabling, Computa-
tional Optimisation and Application Journal, 9, 277-
298.

Fry, T. D., Oliff, M. D., Minor, E. D., and Leong, G. K.
(1989), The effects of product structure and sequenc-
ing rule on assembly shop performance, Interna-
tional Journal of Production Research, 27, 671-686.

Gen, M. and Cheng, R. (1997), Genetic Algorithms and
Engineering Design, John Wiley and Sons, New
York.

Goldberg, D. E. (1989), Genetic Algorithms in Search,
Optimisation and Machine Learning, Addison-
Wesley, Reading, MA.

Garey, M., Johnson, D., and Sethi, R. (1976), The com-
plexity of flow shop and job shop scheduling,
Mathematics of Operations Research, 1(2), 117-129.

Graham, R., Lawler, E., Lenstra, J., and Rinnooy K. A.
(1979), Optimisation and approximation in determi-
nistic sequencing and scheduling: a survey. Annals of
Discrete Mathematics, 5, 287-326.

He, Y. and Hui, C. W. (2007), Genetic algorithm based on
heuristic rules for high-constrained large-size single
stage multi-product scheduling with parallel units,
Chemical Engineering and Processing, 46(11), 1175
-1191.

Hicks, C. and Pongcharoen, P. (2006), Dispatching rules
for production scheduling in the capital goods indus-
try, International Journal of Production Economics,
104(1), 154-163.

King, J. R. and Spackis, A. S. (1980), Scheduling: bibli-
ography and review, International Journal of Physi-
cal Distribution and Materials Management, 10,

105-132.
Montgomery, D. C. (2001), Design and Analysis of Ex-

periments, Fifth edition, John Wiley and Sons, NY.
Nagar, A., Haddock, J., and Heragu, S. (1995), Multiple

and bicriteria scheduling: a literature survey, Euro-
pean Journal of Operational Research, 81, 88-104.

Ousterhout, J. K. (1994), Tcl and the Tk Toolkit, Addison
Wesley, Massachusetts.

Pongcharoen, P., Stewardson, D. J., Hicks, C., and Braiden,
P. M. (2001), Applying designed experiments to op-
timise the performance of genetic algorithms used
for scheduling complex products in the capital goods
industry, Journal of Applied Statistics, 28(3-4), 441-
455.

Pongcharoen, P., Hicks, C., Braiden, P. M., and Steward-
son, D. J. (2002), Determining optimum genetic al-
gorithm parameters for scheduling the manufactur-
ing and assembly of complex products, International
Journal of Production Economics, 78(3), 311-322.

Pongcharoen, P., Hicks, C., and Braiden, P. M. (2004),
The development of genetic algorithms for the finite
capacity scheduling of complex products, with mul-
tiple levels of products structure, European Journal
of Operational Research, 152(1), 215-225.

Reeja, M. K. and Rajendran, C. (2000), Dispatching rules
for scheduling in assembly job shops-Part I, Interna-
tional Journal of Production Research, 38(9), 2051 -
2066.

Reisman, A., Kumar, A., and Motwani, J. (1994), Flow-
shop scheduling/sequencing research: a statistical
review of the literature, 1952~1994, IEEE Transac-
tions on Engineering Management, 44(3), 316-329.

Ruiz, R. and Maroto, C. (2005), A comprehensive review
and evaluation of permutation flow shop heuristics,
European Journal of Operational Research, 165, 479
-494.

Syarif, A., Yun, Y., and Gen, M. (2002), Study on multi-
stage logistic chain network: a spanning tree-based
genetic algorithm approach, Computers and Indus-
trial Engineering, 43(1-2), 299-314.

Todd, D. (1997), Multiple Criteria Genetic Algorithms in
Engineering Design and Operation, Ph.D. thesis,
Faculty of Engineering, University of Newcastle
upon Tyne, UK.

Wichmann, B. A. and Hill, I. D. (1982), Algorithm AS
183 an efficient and portable pseudo-random number
generator, Applied Statistics, 31, 188-190.

