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Abstract. Companies that produce capital goods need to schedule the production of products that have complex 
product structures with components that require many operations on different machines. A feasible schedule 
must satisfy operation and assembly precedence constraints. It is also important to avoid deadlock situations. In 
this paper a Genetic Algorithm (GA) has been developed that includes a new repair process that rectifies infeasi-
ble schedules that are produced during the evolution process. The algorithm was designed to minimise the com-
bination of earliness and tardiness penalties and took into account finite capacity constraints. Three different 
sized problems were obtained from a collaborating capital goods company. A design of experimental approach 
was used to systematically identify that the best genetic operators and GA parameters for each size of problem. 
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1.  INTRODUCTION 

Sequencing determines the order of tasks based upon 
operation and assembly precedence relationships. Sched-
uling is defined as “the allocation of resources over time 
to perform a collection of tasks” (Baker, 1974). A sched-
ule specifies sequence and timing, normally expressed as 
a set of start and due times (Hicks and Pongcharoen, 
2006). Scheduling is a combinatorial optimisation prob-
lem that is classified as an NP hard problem (King and 
Spackis, 1980), which means that the amount of computa-
tion required to find solutions increases exponentially 
with problem size. 

Various assumptions have been made in order to 
simplify, formulate and solve scheduling problems. The 
most common assumptions can be summarised as follows: 
a successor operation is performed immediately after its 
predecessor has finished, providing that the machine is 

available; each machine can handle only one operation at 
a time; each operation can only be performed on one ma-
chine at a time; there is no interruption of operations; 
there is no rework; setup and transfer times are of zero or 
uniform duration; and tasks are independent. 

Production scheduling in the capital goods industry 
is difficult for several reasons. Firstly, demand is highly 
variable and uncertain. The products (e.g. steam turbine 
generators, power station boilers and transformer) are 
complex and are produced from components that require 
a large number of operations on machines with high capi-
tal and operating cost (which means that high utilisation 
is important). There are many operation and assembly 
dependency relationships. There are also multiple finite 
capacity resource constraints and the performance objec-
tives may vary for different product families. Finally, the 
bespoke nature of production leads to large variations in 
product mix.  
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Classical job shop and flow shop scheduling prob-
lems generally consist of a set of independent tasks. This 
is known as single stage scheduling (He and Hui, 2007) 
which means that there are no precedence constraints 
arising from assembly requirements (Blazewicz et al., 
1996a). Scheduling is important because companies seek 
to minimise lead-times and simultaneously achieve high 
resource utilisation. 

There is a comprehensive literature related to classi-
cal flow and job shop scheduling (see for example Garey 
et al., 1976; Graham et al., 1979; Reisman et al., 1994; 
Ruiz and Maroto, 2005). However, there is very little 
research that has considered multi-stage, multi-product 
scheduling problems with finite capacity multi-resource 
constraints. Reeja and Rajendran (2000) highlighted the 
lack of production scheduling research that has taken ac-
count of assembly relationships and constraints. Fry et al. 
(1989) recognized that there is a strong relationship be-
tween product structure and sequencing rule performance. 

The objectives of this paper are to: i) describe a Ge-
netic Algorithm based scheduling tool (GAST) for sched-
uling multiple products with deep and complex product 
structures; ii) explain a new repair process embedded 
within the GAST that rectifies infeasible schedules that 
may be generated during evolution process; iii) demon-
strate the use of an effective experimental design for in-
vestigating the influence of problem size on the GA pa-
rameter settings using three representative problems that 
were obtained from a collaborating capital goods com-
pany. 

The next section of this paper presents the literature 
review related to Genetic Algorithms. Section 3 explains 
the Genetic Algorithm that was developed to schedule the 
manufacture of complex products. Section 4 presents the 
experimental design and provides an analysis of the re-
sults. These are followed by the conclusions, which ap-
pear in section 5. 

2.  LITERATURE REVIEW 

There are two categories of optimisation algorithm: 
conventional and approximation optimisation algorithms 
(Nagar et al., 1995; Blazewicz et al., 1996a). Conven-
tional optimisation algorithms are usually based upon 
mathematical models. Examples include Integer Linear 

Programming, Branch and Bound and Dynamic Pro-
gramming. Approximation optimisation algorithms are 
based upon constructive approaches (e.g. dispatching 
rules, etc.) and/or stochastic search techniques (e.g. Simu-
lated Annealing, Taboo Search, Genetic Algorithm, Parti-
cle Swarm Optimization, Ant Colony Optimisation, Shuf-
fled Frog Leaping and Artificial Immune Systems). 

Genetic Algorithms (GA) have several advantages. 
GA deal with a coding of the problem instead of deci-
sion variables (Syarif et al., 2002). They require limited 
domain knowledge (to represent the problem in terms of 
genes and chromosomes and also an objective function 
for evaluating the fitness of chromosomes) and use sto-
chastic transition rules to guide the search (Goldberg, 
1989). GA perform multiple directional search using a 
set of candidate solutions, whereas most conventional 
methods conduct single directional search (Gen and 
Cheng, 1997). 

There are many research articles related to GA and 
their applications in the fields of production and opera-
tions management. Aytug et al. (2003) reviewed more 
than 110 GA articles published between 1996~2002. They 
found that GA parameters and operators had mostly been 
selected in an ad hoc fashion, rather than using a system-
atic design of experiments approach. A survey conducted 
by Chaudhry and Luo (2005) stated that 67.98% of 178 
GA related research articles had used GA to solve sched-
uling or facility layout problems. 

Much of the scheduling literature relates to classical 
job shop or flow shop problems and ignores assembly 
operations (Reeja and Rajendran, 2000). Multi-stage, 
multi-machine, multi-product scheduling (MMMS) is the 
allocation of resources over time to perform a collection 
of operations required by components, which are subse-
quently sub-assembled and assembled into products in 
accordance with the product structure. The number of 
levels of product structure indicates the number of stages 
of assembly precedence relationships. The leaf nodes 
within the product structure represent components. Since 
some components may require a number of operations to 
be performed on various machines, the sequence of op-
erations for each component must consider the operation 
precedence constraint inherent its manufacturing process.  

Figure 1 shows an example of a typical product 
structure obtained from a collaborating company engaged 
in the capital goods industry. It can be seen that a final 

Figure 1.  A typical product structure from a collaborating company (Hicks and Pongcharoen, 2006). 
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product (P) required assemblies, subassemblies, parts and 
components (C), in each of which a sequence of opera-
tions (O) to be performed on multiple machines (M) is 
specified. In order to formulate the multi-stage, multi-
machine, multi-product scheduling (MMMS) model, the 
following notation is introduced for using in the model. 

 
Notation: 
i operation ith (i = 1, ⋯, O) 
j part or component jth (j = 1, ⋯, C) 
k final product kth (k = 1, ⋯, P) 
m machine mth (m = 1, ⋯, M) 
Rm ready time of machine mth (date) 
Ck completion time of product kth (date) 
Dk due date of product kth (date) 
Cjk completion time of component jth in product kth (date) 
Djk due date of component jth in product kth (date) 
Ek earliness duration of product kth (days) 
Ejk earliness duration of component jth in product kth 

(days) 
Tk tardiness duration of product kth (days) 
SUijkm setup time of operation ith for component jth in 

product kth on machine mth (minute) 
STijkm start time of operation ith for component jth in 

product kth on machine mth (minute) 
PTijkm processing time of operation ith for component jth 

in product kth on machine mth (minute) 
FTijkm finishing time of operation ith for component jth in 

product kth on machine mth (minute) 
TTijkm transfer time of operation ith for component jth in 

product kth on machine mth (minute) 
Xijkabcm 1 if operation ith for component jth in product kth 

precedes operation ath for component bth in product 
cth on machine mth; and 0 otherwise (minute) 

Pe earliness penalty (currency unit per day) 
Pt tardiness penalty (currency unit per day) 
S(x) set of child items of item x 
Sh working hour per shift (minutes per shift) 

 
The scheduling objective is based on the Just in 

Time philosophy that aims to minimise the combination 
of earliness penalties for components and final products 
and tardiness penalties of final products. The mathemati-
cal model for multi-stage multi-machine multi-product 
scheduling (MMMS) problem is as follows: 
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Subject to: 
STijkm ≥ Rm   ∀i, j, k, m  (2) 
FTijkm = STijkm + SUijkm + PTijkm + TTijkm  ∀i, j, k, m  (3) 
Cjk ≥ FTijkm  ∀i, j, k, m  (4) 
Ejk = (Djk - Cjk)/Sh  ∀j, k      (5) 
Ek  = (Dk - Ck)/Sh ∀k       (6) 

Tk  = (Ck - Dk)/Sh ∀k         (7) 
STihkm - STijkm ≥ SUijkm + PTijkm + TTijkm 

∀i, k, m, j∈ S(h)    (8) 
STgjkm - STijkm ≥ SUijkm + PTijkm + TTijkm 

∀j, k, m, g = i + 1   (9) 
Xijkabcm + Xabcijkm = 1        ∀a, b, c, i, j, k, m   (10) 

Xijkabcm ∈ {0, 1}           ∀a, b, c, i, j, k, m   (11) 
Ejk, Ek, Tk ≥ 0              ∀j, k             (12) 
STijkm, Rm ≥ 0              ∀i, j, k, m         (13) 
FTijkm, STijkm, SUijkm, PTijkm, TTijkm ≥ 0  ∀i, j, k, m  (14) 
 

This mathematical model was derived to describe the 
MMMS problem considered in this research. The objec-
tive function (1) contains three parts: i) an earliness pen-
alty for components; ii) an earliness penalty for final 
products; and iii) a tardiness penalty for final products.  
Constraint (2) ensures that the start time of all operations 
is not earlier than the time the machines are ready. Con-
straint (3) makes sure that the finishing time for each op-
eration is determined by the start, setup, machining and 
transfer times. Constraint (4) ensures that the completion 
time for each component is not before the finishing time. 
The number of days earliness and tardiness for compo-
nents and final products are defined by constraints (5), (6) 
and (7). Part precedence constraints relating to the prod-
uct structure are defined by constraint (8). For example, if 
part j is child item of part h, then the start time of the par-
ent part (STihkm) minus the start time of the child item 
(STijkm) should be greater or equal to the sum of setup, 
processing and transfer times for the child item. Con-
straint (9) makes sure that the operation precedence con-
straints within a component are satisfied. For example, if 
a successor operation (g) is performed after its predeces-
sor operation (i) is finished, the start time of the successor 
operation (STgjkm) minus the start time of the predecessor 
operation (STijkm) should be greater or equal to the sum of 
setup, processing and transfer times of the predecessor 
operation. Constraint (10) ensures that only one operation 
can be performed on a machine using the decision vari-
ables defined by constraints in (11). Constraints (12)-(14) 
guarantee non-negative values for those defined variables. 

There is only limited research that relates to this multi 
-stage multi-machine multi-product scheduling (MMMS) 
problem. Pongcharoen et al. (2004) described a Genetic 
Algorithm tool that was developed for solving the MMMS 
problem and reported that the schedules obtained from 
GA outperformed the schedules obtained from a collabo-
rating company. Pongcharoen et al. (2002) investigated 
the significance of the proposed repair process and found 
the best values for GA parameters using regression analy-
sis. However, the computational experiments conducted 
in these papers ignored the genetic operations. The repair 
process used consisted of four steps: i) operation prece-
dence adjustment; ii) part precedence adjustment; iii) 
timing assignment; and iv) deadlock adjustment. The part 
precedence adjustment was designed to satisfy product 
structure constraints i.e. an assembly requires all its sub-
assemblies and components to be complete before it can 
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be produced. A deadlock situation may arise when there is 
a conflict between operation and part precedence con-
straints for different items that both require a common 
resource (Pongcharoen et al., 2002). 

Previous research relating to the multi-stage multi-
machine multi-product scheduling (MMMS) problem has 
not provided an exact mathematical formulation of the 
problem as outlined above. Chen and Ji (2007) applied a 
mixed integer programming method to solve a simple 
MMMS problem. Due to the limitation of their proposed 
method, the numerical experiments were based on a 
small-size problem that consisted of 2 final products with 
a requirement for 21 operations to manufacture 21 items 
(excluding final products). Some of the components were 
duplicated within the product structure. Each item only 
required one operation. Operation precedence constraints, 
setup and transfer times were ignored in their formulation. 

3.  GENETIC ALGORITHM FOR MMMS 

The Genetic Algorithm mechanism starts by encod-
ing the problem to produce a list of genes. The genes are 
represented by either numeric (binary or real), or alpha-
numeric characters. Blazewicz et al. (1996b) suggested 
that the binary chromosome representation is often un-
suitable for combinatorial optimization problems because 
it is very difficult to represent solutions. Therefore nu-
meric or alphanumeric coding is often used. The next step 
is to randomly combine genes to produce a population of 
chromosomes, each of which represents a possible solu-
tion. Genetic operations (crossover and mutation) are next 
performed on chromosomes, which are randomly selected 
from the population as parents to produce offspring. A 
fitness function (objective function) is used to measure 
the chromosomes’ fitness value, from which the probabil-
ity of their survival is determined. The most famous proc-
ess is the ‘Roulette Wheel’ (Goldberg, 1989) which may 
also be used for chromosome selection. The GA process 
is repeated until a termination condition is satisfied. 

In this paper, the general Genetic Algorithm de-
scribed by Goldberg (1989) was modified to include a 
new repair process for scheduling the manufacture of 
complex products in the multi-stage multi-machine envi-
ronment. A schematic of the Genetic Algorithm based 
scheduling tool (GAST) is shown in Figure 2. It includes 
the following steps: i) chromosome presentation and ini-
tialisation; ii) a repair process; iii) fitness evaluation; iv) 
roulette wheel selection; v) a check of the termination 
conditions; and vi) genetic operations (crossover and mu-
tation). The GAST program includes a graphic user inter-
face and graphical outputs (e.g. Gantt charts). The pro-
gram consists of nearly 10,000 lines of TCL program-
ming language code (Ousterhout, 1994). 

3.1 Chromosome Representation and Initialisation 

In this research the operations on each part were en-

coded into genes represented by alphanumeric strings. 
They had two parts: a part code (P) and an operation (O) 
number (see Figure 3). All the genes were randomly se-
quenced to generate a chromosome. This was repeated to 
generate a population of the specified size. It should be 
emphasized that the chromosome representation consid-
ered in this work was not separated into sub-chromosomes, 
which had been the approach adopted by previous re-
search by the authors (Pongcharoen et al., 2002 and 2004). 
The undivided chromosome used was beneficial to the 
repair process that is described in the next sub-section. 

 

 
Figure 2. Structure of the GA based Scheduling Tool 

(GAST). 

 

 
Figure 3. Chromosome representation. 

3.2 Repair Process 

The processes of chromosome initialisation and ge-
netic operations within the evolution procedure within the 
GA may produce infeasible chromosomes (schedules) 
that represent impractical solutions that contravene con-
straints. There are three ways to deal with infeasible solu-
tions: i) discard them; ii) apply a high penalty in the fit-
ness function so that they are unlikely to survive; or iii) 
repair them (Blum and Roli, 2003). Discarding infeasible 
solutions or applying a high penalty is only an option 
when a large proportion of the population is feasible. 
Otherwise, the GA process could be terminated if all 
chromosomes in the population are infeasible. Several 
researchers have used a repair process for rectifying in-
feasible chromosomes in timetabling research (e.g. Cal-
deira and Agostinho, 1997; Colorni et al., 1998) and 
scheduling research (Pongcharoen et al., 2004). The re-
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pair processes are problem specific due to differences 
between problem domains, chromosome representation, 
structures of the solution space and the nature of con-
straints. The undivided chromosome representation used 
in this work allowed a new compact repair process to be 
developed that has only two stages: i) part precedence 
adjustment; and ii) operation precedence adjustment. These 
processes are described in the following sub-sections. 

3.2.1 Part Precedence Adjustment 

In previous research part precedence adjustment was 
based upon re-sequencing based upon the level of a part 
within the product structure. In this research part prece-
dence adjustment was based upon the assembly lines de-
fined in its product structure. For example, if there is a 
product structure (e.g. the product structure in Figure 3), 
part number 1, 2 and 3 require one operation whilst the 
remaining parts (part no. 4, 5, 6 and 7) require two opera-
tions. The process of checking and reordering parts was 
based on four assembly lines specified in the product 
structure. Figure 4 shows an example of checking and 
reordering parts in the first assembly line. The process 
began by selecting genes involved in the first assembly 
line for precedence checking regarding to the assembly 
line. If the selected genes had been in the wrong order 
(infeasible), then the selected genes are reordered based 
on its assembly requirement and finally replaced back to 
the positions they are selected but in a new feasible se-
quence. This process was repeated until all assembly lines 
in the product structure were considered. 

 

 
Figure 4. Example of the new part precedence adjustment. 

 
The part precedence adjustment described allows the 

repair process to always avoid the deadlock situations that 
arose in previous research. This means that there was no 
conflict arising from operation and part precedence con-
straints. The deadlock adjustment was therefore excluded 
from the repair process proposed as it was unnecessary. 
The new repair process is therefore easier and requires 
fewer steps than those used in previous research. It is 
therefore more computationally efficient. 

3.2.2 Operation Precedence Adjustment 

The process of operation precedence adjustment was 
applied to each part that required two or more operations. 

For example, the product structure shown in Figure 3 has 
four parts (part no. 4, 5, 6 and 7) that required two opera-
tions for each part. Figure 5 shows an example of check-
ing and reordering of the two operations required for part 
number 4. The genes corresponding to the operations on 
each part are identified and the order of operations is 
checked to ensure that is satisfies operation precedence 
constraints. If the selected genes are in the wrong order, 
then the selected genes are reordered in a new sequence. 
The process is repeated until the operation precedence 
constraints for all parts are satisfied. 

 

 
Figure 5. Example of operation precedence adjustment. 

3.3 Fitness Function 

The next stage was to measure the fitness of the 
chromosomes. The quality of schedules was evaluated by 
using the fitness (objective) function given in Equation 
(1), which aggregated the penalty cost arising from earli-
ness and tardiness. 

3.4 Roulette Wheel Selection 

This stage produced a new generation with the same 
population size as the initial population. The roulette 
wheel (Goldberg, 1989) approach was used for chromo-
some selection. It used a random number generator over 
the range 0-1 (Wichmann and Hill, 1982). The probability 
of survival and number of replicates of a chromosome in 
the next generation was determined by its fitness. The GA 
process was repeated until the termination criterion was 
satisfied. 

3.5 Genetic Operations: Crossover and Mutation 

There are two types of genetic operator: crossover 
and mutation. A crossover operator generally combines 
the characteristics of two parents to produce an offspring, 
whilst mutation usually produces random change in one 
chromosome. Many crossover and mutation operators 
have been developed and reviewed in the literature (see 
for example Pongcharoen et al., 2001, which considered a 
comprehensive list). In this research, the nine crossover 
and nine mutation operators shown in Table 1 were con-
sidered. 

A Genetic Algorithm requires parameters and opera-
tors to be specified. There is no particular configuration 
that can guarantee to find the best solution for different 
problem sizes or domains. The configuration of GA struc-
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ture should therefore be systematically investigated through 
using a design of experiments approach (Montgomery, 
2001), which is described in the next section. 

 
Table 1. Crossover and mutation operators. 

Crossover operators (COP) Mutation operators (MOP) 

Enhanced edge recombina-
tion (EERX) 

Enhanced 2-operation ran-
dom swap (E2OR) 

Order crossover (OX) Inverse mutation (IM) 

Partially mapped crossover 
(PMX) 

Shift operation mutation 
(SOM) 

Cycling crossover (CX) Three operations adjacent 
swap (3OAS) 

Position based crossover 
(PBX) 

Three operations random 
swap (3ORS) 

Maximal preservation cross-
over (MPX) 

Two operations adjacent 
swap (2OAS) 

One point crossover (1PX) Two operations random 
swap (2ORS) 

Two point centre crossover 
(2PCX) 

Centre inverse mutation 
(CIM) 

Mixed-crossover (MXOV) Mixed-mutation (MMUT) 

4.  EXPERIMENTAL DESIGN AND 
ANALYSIS 

In this work, three sizes of industrial scheduling 
problem adopted from Pongcharoen et al. (2004) were 
considered (see Table 2). Data, including production 
schedules, product structure relationships, process plans 
and resource loading information were obtained from a 

collaborating company that was in the make/engineer to 
order capital good industry. The first (small) problem, 
involved two different products (245 and 451), which had 
a combined requirement of twenty-five machining opera-
tions on eight resources with nine assembly operations. 
The second and third problems were termed medium and 
large, respectively. The large problem involved 118 ma-
chining and 17 assembly operations on 17 resources. 
There were interactions and contention for resources. 

The aim of the computational experiments was to 
investigate the performance of GA and to identify the best 
configuration of parameters and operators for the three 
problem sizes. The GA parameters and operators were 
considered as factors, each of which had three levels (see 
Table 3). 

The first factor was the combination of the popula-
tion size and the number of generations (P*G), deter-
mined the total number of chromosomes (candidate solu-
tions) created and therefore had a strong influence on the 
execution time. A large number of generations with a 
large population size increased the amount of search and 
increased the probability of finding an optimal solution. 
Due to the limitation of execution time and resources 
required for each computational run, the combination of 
P*G considered in this work was fixed at 2,500 chromo-
somes. The next two factors were the probabilities of 
crossover (%C) and mutation (%M). The range consid-
ered for these factors were adopted from previous re-
search (Todd, 1997; Pongcharoen et al., 2002). Finally, 
nine crossover (COP) and nine mutation operations 
(MOP) shown in Table 1 were considered as last two fac-
tors. 

With these experimental factors and levels, a full 
factorial experimental design would require 2,187 (3x3x 
3x9x9) computational runs for a single replication. In 
order to reduce this, a novel experimental design was 

Table 2. Industrial scheduling problem. 

Characteristics of scheduling problems 
Problem 
number 

Part  
number Number of 

Products 
Number of 

Components 
Machining/Assembly 

Operation 
Number of 
Resources 

Levels of  
product structure

1 245 and 451 2 6 25/9 8 4 
2 229 and 451 2 8 57/10 7 4 
3 4 and 228 2 12 118/17 17 4 
 

Table 3. Experimental factors and its levels. 

Values 
Factors Levels 

Low (-1) Medium (0) High (+1) 
Propulation * Generation (P * G) 3 25 * 100 50 * 50 100 * 25 
Probability of Crossover (%C) 3 0.1 0.5 0.9 
Probability of Mutation (%M) 3 0.05 0.1 0.15 
Crossover operators (COP) 9  See Table 1  
Mutation operation (MOP) 9  See Table 1  
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adopted to reduce the number of runs required. The pro-
posed design embedded a one-third (33-1) fractional fac-
torial experimental design within the Latin Square ex-
perimental design. The factorial design (see Table 4) 
involved nine combination of treatments or settings de-
noted by the alphabet letters A, B, C, ⋯, I. Each com-
bination was then embedded into the Latin Square de-
sign (see Table 5), which was based on the concept of a 
blocking experiment (Montgomery, 2001). It can be 
seen that each alphabet letter (treatment) was applied 
once and only once in each row (mutation) and column 
(crossover). Using the proposed experimental design, 
the total numbers of runs were reduced from 2,187 to 81 
for each replication. This design dramatically reduced 
the computational effort by 96%. 

Experimental results were obtained from five repli-
cates that used different random seed numbers. The re-
sults were then analysed using a general linear form of the 
analysis of variance and main effect plots were produced. 
Table 6 shows the F and p values for the main factors for 
each problem size. It can be seen that all the main factors 
were statistically significant with a 95% confidence inter-
val as they had p values that were less than or equal to 
0.05. However, P*G was statistically insignificant for 
medium problem. This means that the performance of GA 

was dependent upon the configuration of the GA parame-
ters and operators used. It should be noted that the aver-
age execution time were 20, 50 and 130 seconds for the 
small, medium and large problem, respectively (using a 
PC with AMD 1.3 GHz CPU with 128 MB RAM). 

 
Table 4. The one-third (33-1) fractional factorial design. 

Combine P*G %C %M U = 0 
A 25/100 0.1 0.05 000 
B 25/100 0.5 0.15 012 
C 50/50 0.1 0.1 101 
D 100/25 0.1 0.15 202 
E 25/100 0.9 0.1 021 
F 50/50 0.5 0.05 110 
G 50/50 0.9 0.15 122 
H 100/25 0.5 0.1 211 
I 100/25 0.9 0.05 220 

 
In order to identify the appropriate settings of the 

significant parameters, main effect plots for the statisti-
cally significant parameters are presented in Figure 6. It 
can be seen that, for the small problem, the best results 

Table 5. The Latin Square design. 

Design CX EERX MPX IPX OX PBX PMX 2PCX MOXV
2OAS A I H G F E D C B 
3OAS B A I H G F E D C 
2ORS C B A I H G F E D 
3ORS D C B A I H G F E 

IM E D C B A I H G F 
SOM F E D C B A I H G 
CIM G F E D C B S I H 

E2ORS H G F E D C B A I 
MMUT I H G F E D C B A 

 
Table 6. The analysis of variance on three problem sizes. 

Problem sizes 
 

Small Medium Large 
Source DF F P F P F P 
P * G 2 36.46 0.000  1.99 0.138 13.29 0.000 
%C 2  4.46 0.012 22.31 0.000 21.56 0.000 
%M 2  3.09 0.047  2.87 0.058  7.64 0.001 
COP 8  8.17 0.000 35.21 0.000 40.14 0.000 
MOP 8  4.71 0.000  2.67 0.007  2.81 I0.005 
Seed 4  4.82 0.001  16.8 0.000 19.27 0.000 
Error 378       
Total 404       
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were obtained from the setting of P*G at 100*25 with 
the probabilities of crossover and mutation set at 0.5 and 
0.15 respectively. For the medium problem, the best 
configuration was 50*50, 0.9 and 0.1, respectively. 
Whilst the best setting for the large problem was found 
to be at 50*50, 0.9 and 0.1, respectively. These results 
indicated that the best GA configurations are problem 
specific and are influenced by the structure of the prob-
lem domain, the size of the solution space and the nature 
of the constraints. 

 

 

(a) Small problem 
 

 

(b) Medium problem 
 

 

(c) Large problem 

Figure 6. Main Effect Plot of the GA parameters. 

 
Main effect plots for both statistically significant op-

erators are presented in Figure 7. This suggested that the 
best crossover operators for small, medium and large size 
problems were MPX, MPX and OX respectively. For 

mutation, the appropriate operators were 3ORS, CIM and 
MMUT. It can be concluded that the efficiency of GA 
operators were differentiated according to the size of the 
scheduling problem. 

 

 
(a) Small problem 

 

 
(b) Medium problem 

 

 
(c) Large problem 

Figure 7. Main Effect Plot of the GA operators. 

 
Even though the efficiency of the GA operators 

was different for the various problem sizes considered, it 
was worth investigating which operator generally per-
formed best. Table 7 shows the mean and standard de-
viation of the penalty costs associated with the sched-
ules obtained for the different problems. When consider-
ing the best and the second best performance of both 
crossover and mutation operators for each problem sizes, 
the maximal preservation crossover (MPX) and the 
mixed mutation (MMUT) operators were found to help 
the GA process to achieve the lowest mean penalty costs. 
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5.  CONCLUSIONS 

This paper described the Genetic Algorithm based 
Scheduling Tool (GAST) for solving the multi-stage 
multi-machine multi-product scheduling (MMMS) prob-
lem. A mathematical model of MMMS problem was pro-
posed. The model considered setup and transfer times and 
the operation precedence constraints within each compo-
nent, which had been ignored by previous research. The 
proposed algorithm included a new repair process that 
was embedded within the proposed GA for rectifying 
infeasible schedules that were generated in the evolution 
process. A new repair process was used that always 
avoided deadlock, which was a problem in previous re-
search. The algorithm minimises the combination of 
earliness and tardiness penalties with finite resource ca-
pacity. The GAST was applied to solve three representa-
tive problems obtained from a collaborating capital goods 
company. 

The computational experiments were aimed to inves-
tigate the appropriate settings of Genetic Algorithm pa-
rameters and mechanisms for various problem sizes using 
an advanced experimental design. The proposed design 
dramatically decreased the computational time and com-
puting resource required. The analysis of experimental 
results obtained from the GAST indicated that all the Ge-

netic Algorithm parameters and mechanisms influenced 
the results obtained for all three problem sizes. However, 
the efficiency of crossover and mutation operators varied 
depending on the problem size. It suggested that the ap-
propriate setting of GA parameters and mechanisms were 
dependent on the size and the structure of the solution 
space, which was directly related to the problem size. 
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