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Abstract

We consider the stale problem which makes the training speed slow in the field of deep learning. The problem can 

be formulated as a single-machine scheduling problem with generalized due dates in which the objective is to minimize 

the total earliness and tardiness. We show that the problem can be solved in polynomial time if the orders of the 

small and the large jobs in an optimal schedule are known in advance. 
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요  약

본 논문은 딥러닝을 위한 분산학습에서 학습속도를 저하시키는 stale 문제를 최소화하기 위한 방법으로 데이터 

시퀀싱을 제안하였다. 이 데이터 시퀀싱 문제는 일반 납기를 갖는 단일 공정 하에서 일찍 혹은 늦음 정도의 

총합을 최소화 하는 스케줄링 문제로 모델링할 수 있다. 만약 최적해에서 크기가 작은 작업과 큰 작업의 

순서가 미리 알려져 있다면, 이 스케줄링 문제가 효율적으로 풀린다는 것을 보였다.

■ 중심어 : 스케줄링, 일반 납기, 분산 학습
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Ⅰ. Introduction

Recently, deep learning [18], a set of techni-

ques for artificial intelligence and machine learn-

ing, has received great interest from both the aca-

demic and industrial worlds. The name, deep 

learning, comes from the use of an artificial neu-

ral network (ANN) with more than two hidden 

layers, implemented as parametric functions over 

the data, where the parameters are either learnable 

or trainable. Currently, deep learning has ach-

ieved remarkable successes in various artificial 

intelligence tasks, ranging from machine trans-

lation [3] to image recognition [17], and is still 

making advances in these tasks.

There are several factors behind the success of 

deep learning. Novel architectures [16,19] and al-

gorithms [13,21] have been proposed to handle a 

huge amount of data, and highly efficient hard-

wares are developed for efficient data processing. 

However, the hardware such as graphical process-

ing units (GPUs) designed to implement mas-

sively parallel processing of data is still not fast 

enough to train ANNs in a reasonable time. Thus, 

to overcome this limitation of the hardware, vari-

ous forms of distributed processing have been 

proposed to accelerate the training process [8]. 

Taking into account the processing and com-

munication aspects of distributed processing, 

there exist two types of systems, asynchronous 

and synchronous training systems [22]. In the 

context of training large-scale ANNs, asynchro-

nous training systems are more preferred due to 

their fault-tolerant characteristics [4,8]. The basic 

form of asynchronous training system consists of 

a single parameter server and multiple data serv-

ers, whose operating mechanism is described as 

follows. 

First, the parameter server distributes the entire 

data to each data servers. Then, the data server 

carries out the two phases below.

Phase I: The data server shuffles the data re-

ceived from the parameter server, incrementally 

constructs chunks one at a time such that all 

chunks consist of the same number of data, and 

then sequences the chunks in random order. In the 

neural networks terminologies, these chunks are 

typically called mini-batches over which one gra-

dient computation is performed.

Phase II: The data server analyzes the data in 

the current chunk based on the parameter received 

from the parameter server, and then transmits the 

results to the parameter server. Next, the parame-

ter server updates the parameter based on the re-

sults received from the data server and transmits 

the updated parameter to the data server. Note 

that initially, the parameter server transmits the 

initial parameter to all data servers, and this proc-

ess is iterated until all chunks in each data server 

are processed. 

The main weakness of this asynchronous train-

ing system is a stale problem which makes the 

training speed slow [22, 24]. Note that the stale 

problem refers to the phenomena in which the re-

sults of a particular data server happen to be out-

dated and hence updates by that server impede the 

entire training procedure. Ideally, the stale prob-

lem can be completely resolved through simulta-

neous updates by the data servers. This requires 

that the sizes of each chunk are identical, the 

processing capacities of data servers are identical, 

and any communication delays are ignorable. 

However, it is impossible to satisfy these require-

ments in the real-world situations.
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In this paper, we propose the modification of 

Phase I for the asynchronous training system to 

mitigate the stale problem, which can be specifi-

cally stated as follows:

⋅All data servers share cycles of the same 

length, denoted ∆, by which consecutive up-

dates are occurred.

⋅After constructing the set of chunks, the data 

server processes the chunks in the appro-

priate order. 

The cycles of a predefined length act as an 

agreement among data servers under which each 

data server try to complete the processing of their 

individual chunk as close as possible within the 

cycle. Then, the staleness for each data server can 

be represented as the total deviation between 

shared cycles and the realized updates. 

In this paper, we propose a machine scheduling 

formulation for the modification of Phase I above. 

This formalism helps one handle the proposed 

modification by using the previous results in the 

filed of the machine scheduling. 

The remainder of the paper is organized as 

follows. In Section II, we introduce machine 

scheduling formulation of the proposed 

modification. Relevant literature in the context of 

machine scheduling is reviewed in Section III. 

Section IV presents a polynomially solvable case. 

Finally, we complete the paper with concluding 

remarks. 

Ⅱ. Machine scheduling formulation

In this paper, the scheduling problem is to find 

the sequence of chunks for a data server minimiz-

ing the total staleness. 

Our problem can be formally stated as follows. 

Let  be the dataset received from the parameter 

server and  be the processing time of datum 

∈. Assume that the data server has constructed 

an -partition ⋯  of , where the sizes 

of each partition ,  
∈

 are as close to each 

other as possible, that is, 
min

max
≤ , where min 

and max  are the minimum and the maximum 

lengths of chunks, respectively and    is a suf-

ficiently small threshold. Henceforth, let a chunk 

be referred to as a job, and ⋯ be the 

job set. Let      ≤  for ∈ and 

  ╲. Let the jobs in  and   be referred 

to as small and large jobs, respectively. Let  

and   be the cardinality of  and  , 

respectively. Note that the th due date is calcu-

lated as ,    Let    

  be a sequence, where   is the th job 

in . Let   and   be the completion or-

der and the completion time of job  under . 

The objective is to find a sequence  that mini-

mizes

 
 



 ,

where for each   ⋯, 

 max

and

 max.

Note that   means the total staleness. Since 

the data server should not remain idle due to the 

expensive operating cost, the first job should be 

started at time 0 and no idle time between the 
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consecutive jobs exists. Let the problem above be 

referred to as Problem P. 

Ⅲ. Literature review

Problem P belongs to the class of the sin-

gle-machine scheduling problems with general-

ized due dates (GDD) such that each due date is 

given not for a specific job, but for a specific 

position. The scheduling problem with GDD was 

introduced by Hall [11]. Hall [11] and Hall et al. 

[12] established the computational complexities 

for the single-machine cases with various ob-

jective function (e.g., maximum lateness, total 

weighted completion time, total weighted tardi-

ness and weighted number of tardy jobs). Since 

the case to minimize the total weighted tardiness 

is related with our problem, we focus on that 

case. It was known from Hall [11] to be poly-

nomiall solvable if the weights are identical. 

Sriskandarajah [20] and Gao and Yuan [10] 

proved the NP-hardness and the strong NP-hard-

ness, respectively. 

The single-machine scheduling problem to 

minimize the total weighted earliness and tardi-

ness has been initiated from Hall et al. [14] and 

Hall et al. [15]. They considered the case with a 

common due date. It was known from [14,15] that 

it is weakly NP-hard, and remains so even if the 

weights are identical. Wan and Yuan [23] consid-

ered the case with different due dates, and 

showed that it is strongly NP-hard even for the 

case with identical weights. Choi et al. [5] 

showed that the problem of Wan and Yuan [23] 

remains strongly NP-hard, even if the intervals 

between the consecutive due dates are identical. 

Recently, Choi et al. [6] considered the problem 

of Choi et al. [5], and analyzed how the computa-

tional complexity changes depending on the num-

ber of the large jobs. Choi and Park [7] consid-

ered a single-machine case with the identical in-

tervals between the consecutive due dates, in 

which the objective is to minimize the total 

weighted number of early and tardy jobs. They 

analyzed the computational complexity for vari-

ous cases.

Ⅳ. Computational complexities

In this section, we introduce the previous re-

sults for the computational complexity of Problem 

P, and develop a polynomial-time approach to 

solve the case with the predetermined precedence 

constraints among small and large jobs, 

respectively. 

Proposition 1 [6]   Problem P is NP-hard if 

the number of the large jobs exists between one 

and .

  Problem P is polynomially solvable if the 

number of the large jobs is equal to zero or .

In the context of distributed training of neural 

networks or other kinds of learning tasks in ma-

chine learning, the special case can be observed 

when curriculum learning [2] is considered. In the 

setting of curriculum learning, training data is fed 

into the neural network in a meaningful order 

which illustrates gradually more complex ones. 

Thus, jobs can be ordered in advance depending 

on the level of “difficulty”. Motivated from this, 

we further assume that the orders of small and 

large jobs are separately determined in advance. 

Formally, let

  ⋯  
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and 

  ⋯   

be the precedence relations among the jobs in  

and   under , respectively, where job 

() is the job sequenced th among all 

small (large) jobs in . The next theorem claims 

that when the orders of small and large jobs are 

determined in advance, Problem P can be solved 

in polynomial time.

Theorem 1 If 
  and 

  are known in 

an optimal schedule , then Problem P is poly-

nomially solvable. 

Proof. We prove the polynomiality by a reduc-

tion to the shortest path problem. Let   and 

   be the source and the sink nodes, 

respectively. Let   be the node indicating 

that the jobs in

⋯ 

and 

⋯ 

have been sequenced. Let   be connected to:

⋅if  ≤ ,   with length 


 









 









⋅if  ≤  ,   with length 


 









 









The objective is to find the shortest path from 

the source to sink node in the reduced graph. 

Note that is reduction can be in  . Note that 

the total number of edges is at most  . Thus, 

since the reduced graph is acyclic, the shortest 

path problem can be solved in   by the algo-

rithm in [1]. It is observed that the optimal sched-

ule  can be constructed immediately from the 

shortest path. 

From the result of the above theorem, we can 

also deduce the complexity result of another inter-

esting case. In Problem P, we allow each chunk 

to have different sizes. This situation arises when 

we train neural networks to process the data with 

different sizes such as audio, video and so on. In 

other circumstance, however, all data has the 

same size, e.g., the image data of a fixed 

resolution. In this case, we can assume that every 

chunk has the same size. 

Corollary 2 If the processing times of the small 

(large) jobs are identical, Problem P is poly-

nomially solvable. 

Proof. It holds immediately from Theorem 1. 

Ⅴ. Conclusions

We considered a scheme for training neural 

networks in asynchronous distributed setting. We 

formulated it as a single-machine scheduling 

problem with generalized due dates in which the 

objective is to minimize the total earliness and 

tardiness. This objective means the total staleness 

that makes the training speed slow. We developed 

an approach to solve the problem in polynomial 

time if the orders of the small and the large jobs 

in an optimal schedule are known in advance. 

For future research, it would be interesting to 

investigate different settings of asynchronous 
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training and their machine scheduling for- 

mulations. In practical senses, it is also interesting 

to verify the effectiveness of the proposed scheme 

by experimenting to train large-scale neural net-

works over massive training data.
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