• Title/Summary/Keyword: e-Science Grid

Search Result 140, Processing Time 0.027 seconds

Evaluation and Test Method Characterization for Mechanical and Electrical Properties in BGA Package (BGA 패키지의 기계적${\cdot}$전기적 특성 평가 및 평가법)

  • Koo Ja-Myeong;Kim Jong-Woong;Kim Dae-Gon;Yoon Jeong-Won;Lee Chang-Yong;Jung Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.289-299
    • /
    • 2005
  • The ball shear force was investigated in terms of test parameters, i.e. displacement rate and probe height, with an experimental and non-linear finite element analysis for evaluation of the solder joint integrity in area array packages. The increase in the displacement rate and the decrease in the probe height led to the increase in the shear force. Excessive probe height could cause some detrimental effects on the test results such as unexpected high standard deviation and probe sliding from the solder ball surface. The low shear height conditions were favorable for assessing the mechanical integrity of the solder joints. The mechanical and electrical properties of the Sn-37Pb/Cu and Sn-3.5Ag/Cu BGA solder joints were also investigated with the number of reflows. The total thickness of the intermetallic compound (IMC) layers, consisting of Cu6Sn5 and Cu3Sn, was increased as a function of cubic root of reflow time. The shear force was increased up to 3 or 4 reflows, and then was decreased with the number of reflows. The fracture occurred along the bulk solder, in irrespective of the number of reflows. The electrical resistivity was increased with increasing the number of reflows.

  • PDF

Construction of Ionospheric TEC Retrieval System Using Korean GNSS Network (국내 GNSS 관측 자료를 이용한 전리권 총전자밀도 산출 시스템 구축)

  • Lee, Jeong-Deok;Shin, Daeyun;Kim, Dohyeong;Oh, Seung Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2012
  • National Meteorological Satellite Center(NMSC) of Korea Meteorological Administration(KMA) has launched to implement the application development to get prepared for the space weather operation since 2010. As a action of KMA's space weather work, NMSC constructed Global Navigation Satellite System(GNSS) application system for meteorology and space weather. We will introduce NMSC's space weather application system which derives regional TEC(Total Electron Content) in near real time using nation-wide GNSS network data. First, We constructed system for collecting GNSS data, which is currently collecting about 80 stations operated by agencies like NGII(National Geographic Information Institute), Central Office of DGPS(Differential GPS), and KASI(Korea Astronomy and Space Science) including KMA's own data of 2 stations. In order to retreive regional TEC over Korean peninsular, we build up the automatic processes running every 1-hour. In these processes, firstly, GNSS data of every stations with 24 hours time window are processed to derive DCBs(Differential Code Biases) of each GNSS station and TEC values on every ionosphere piercing point(IPP). Then we made gridded regional TEC map with resolution of 0.25 degree from 31N, 121E to 41N, 135E by combination of all station results within 30 minutes window with assumption that TEC of a given point during a given 30 minutes window would have a constant value. The grid points without TEC value are interpolated using Barnes objective analysis. We presentour regional TEC maps, which can describe better on the status of ionosphere over Korean peninsular compared to IGS TEC maps.

Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US (다양한 기후요소와 지표에 대한 CMIP5 GCMs 모델 성능 평가 -미국 남동부 지역을 대상으로-)

  • Hwang, Syewoon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1039-1050
    • /
    • 2014
  • The goal of this study is to demonstrate the diversity of model performance for various climatic elements and indicators. We evaluated the skills of the most advanced 17 General Circulation Models (GCMs) i.e., CMIP5 (Climate Model Inter-comparison project, phase 5) climate models in reproducing retrospective climatology from 1950 to 2000 over the Southeast US for the key climatic elements important in the hydrological and agricultural perspectives (i.e., precipitation, maximum and minimum temperature, and wind speed). The biases of raw CMIP5 GCMs were estimated for 16 different climatic indicators that imply mean climatology, temporal variability, extreme frequency, etc. using a grid-based observational dataset as reference. Based on the error (RMSE) and correlation (R) of GCM outputs, the error-based GCM ranks were assigned on average over the indicators. Overall, the GCMs showed much better accuracy in representing mean climatology of temperature comparing to other elements whereas few GCM showed acceptable skills for precipitation. It was also found that the model skills and ranks would be substantially different by the climatic elements, error statistics applied for evaluation, and indicators as well. This study presents significance of GCM uncertainty and the needs of considering rational strategies for climate model evaluation and selection.

Geographical Migration of Winter Barley in the Korean Peninsula under the RCP8.5 Projected Climate Condition (신 기후변화시나리오에 따른 한반도 내 겨울보리 재배적지 이동)

  • Kim, Dae-Jun;Kim, Jin-Hee;Roh, Jae-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.161-169
    • /
    • 2012
  • The RCP 8.5 scenario based temperature outlook (12.5 km resolution) was combined with high-definition gridded temperature maps (30 m grid spacing) across the Korean Peninsula in order to reclassify the cold hardiness zone for winter barley, a promising grain crop in the future under warmer winter conditions. Reference maps for the January minimum and mean temperature were prepared by applying the watershed-specific geospatial climate prediction schemes to the synoptic observations from 1981 to 2010 across North and South Korea. Decadal changes in the January minimum and mean temperatures projected by a regional version of RCP8.5 climate change scenario were prepared for the 2011-2100 period at 12.5 km grid spacing and were subsequently added to the reference maps, producing the 30 m resolution temperature surfaces for 9 decades from 2011 to 2100. A criterion for threshold temperature to grow winter barley safely in Korea was applied to the future temperature surfaces and the resulting maps were used to predict the production potential of 3 cultivar groups for the 9 future decades under the projected temperature conditions. By 2020s, hulled barley cultivars could be grown safely at the southern part of North Korea as well as the mountainous Gangwon province. Furthermore, most of South Korean rice paddies will be safe for growing naked barley after harvesting rice. Also, dual cropping systems such as 'winter-barley after rice' could be possible at most of the North Korean rice paddies by 2040s. Additional grain production in North Korea could increase up to 4 million tons per year if dual cropping systems can be fully operated, i.e., winter barley after rice at all lowlands and winter barley after maize or potato at all uplands.

Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images (기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정)

  • Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1009-1029
    • /
    • 2023
  • Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.

Time-series Mapping and Uncertainty Modeling of Environmental Variables: A Case Study of PM10 Concentration Mapping (시계열 환경변수 분포도 작성 및 불확실성 모델링: 미세먼지(PM10) 농도 분포도 작성 사례연구)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.249-264
    • /
    • 2011
  • A multi-Gaussian kriging approach extended to space-time domain is presented for uncertainty modeling as well as time-series mapping of environmental variables. Within a multi-Gaussian framework, normal score transformed environmental variables are first decomposed into deterministic trend and stochastic residual components. After local temporal trend models are constructed, the parameters of the models are estimated and interpolated in space. Space-time correlation structures of stationary residual components are quantified using a product-sum space-time variogram model. The ccdf is modeled at all grid locations using this space-time variogram model and space-time kriging. Finally, e-type estimates and conditional variances are computed from the ccdf models for spatial mapping and uncertainty analysis, respectively. The proposed approach is illustrated through a case of time-series Particulate Matter 10 ($PM_{10}$) concentration mapping in Incheon Metropolitan city using monthly $PM_{10}$ concentrations at 13 stations for 3 years. It is shown that the proposed approach would generate reliable time-series $PM_{10}$ concentration maps with less mean bias and better prediction capability, compared to conventional spatial-only ordinary kriging. It is also demonstrated that the conditional variances and the probability exceeding a certain thresholding value would be useful information sources for interpretation.

Distribution of mushrooms spontaneously growing in Naejangsan National Park (내장산국립공원의 자생버섯 분포상)

  • Pyung-Yeol, Ko;Hye-Sung, Park;Seung-Hak, Lee;Yong-Chull, Jeun
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.208-217
    • /
    • 2022
  • Mushrooms in Naejangsan National Park between May and September of 2021 have been surveyed. In this period, a total of 4 divisions, 9 classes, 25 orders, 72 families, 171 genera, and 381 species, including 3 climate-sensitive biological indicator species were found. The order in which the most diverse array of species was observed is Agaricales, which includes 24 families, 64 genera, and 170 species. Among these, the genus Russula was dominant, with 30 species, followed by the genus Amanita with 27 species. Among the 12 grids we investigated, species diversity was greatest in grid F5, in which 56 species of mushrooms were found. In particular, a large number of ectomycorrhizal mushrooms, including Russula spp. and Lactarius spp. were recognized. We presume that the gentle slopes and the low occurrence of Sasa borealis in this area may create a favorable environment for wild mushrooms. In corroboration, some grids (e.g. F6, F8, and F10) covering steep slopes and harboring large numbers of Sasa borealis contained only 19 species. Based on DNA sequence analysis, the NJ21064 was identified as Chlorophyllum hortense, which is newly recorded in Korea.

Modeling Three-dimensional Free Surface Flow around Thin Wall Incorporation Hydrodynamic Pressure on δ-coordinate (δ-좌표계에서 동수압 계산 수중벽체 인근흐름 수치모형실험)

  • Kim, Hyo-Seob;Yoo, Ho-Jun;Jin, Jae-Yul;Jang, Chang-Hwan;Lee, Jung-Su;Baek, Seung-Won
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.327-336
    • /
    • 2014
  • Submerged thin walls are extreme case of submerged rectangular blocks, and could be used for many purposes in rivers or coastal zones, e.g. to tsunami. To understand flow characteristics including flow and pressure fields around a specific submerged thin wall a numerical model was applied which includes computation of hydrodynamic pressure on ${\sigma}$-coordinate. ${\sigma}$-coordinate has strong merits for simulation of subcritical flow over mild-sloped beds. On the other hand ${\sigma}$-coordinate is quite poor to treat sharp structures on the bed. There have been a few trials to incorporate dynamic pressure in ${\sigma}$-coordinate by some researchers. One of the previous approaches includes process of sloving the Poisson equation. However, the above method includes many high-order terms, and requires long cpu for simulation. Another method SOLA was developed by Hirt et al. for computation of dynamic pressure, but it was valid for straight grid system only. Previous SOLA was modified for ${\sigma}$-coordinate for the present purpose and was adopted in a model system, CST3D. Computed flow field shows reasonable behaviour including vorticity is much stronger than the upstream and downstream of the structure. The model was verified to laboratory experiments at a 2DV flume. Time-average flow vectors were measured by using one-dimensional electro-magnetic velocimeter. Computed flow field agrees well with the measured flow field within 10 % error from the speed point of view at 5 profiles. It is thought that the modified SOLA scheme is useful for ${\sigma}$-coordinate system.

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.