• 제목/요약/키워드: dynamical systems

검색결과 444건 처리시간 0.031초

A Real-Time Control for a Dual Arm Robot Using Neural-Network with Dynamic Neurons

  • Jeong, Kyung-Kyu;Han, Sung-Hyun;Jang, Young-Hee;Lee, Kang-Doo;Kim, Kyung-Yean
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.69.2-69
    • /
    • 2001
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes.

  • PDF

INVARIANT GRAPH AND RANDOM BONY ATTRACTORS

  • Fateme Helen Ghane;Maryam Rabiee;Marzie Zaj
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.255-271
    • /
    • 2023
  • In this paper, we deal with random attractors for dynamical systems forced by a deterministic noise. These kind of systems are modeled as skew products where the dynamics of the forcing process are described by the base transformation. Here, we consider skew products over the Bernoulli shift with the unit interval fiber. We study the geometric structure of maximal attractors, the orbit stability and stability of mixing of these skew products under random perturbations of the fiber maps. We show that there exists an open set U in the space of such skew products so that any skew product belonging to this set admits an attractor which is either a continuous invariant graph or a bony graph attractor. These skew products have negative fiber Lyapunov exponents and their fiber maps are non-uniformly contracting, hence the non-uniform contraction rates are measured by Lyapnnov exponents. Furthermore, each skew product of U admits an invariant ergodic measure whose support is contained in that attractor. Additionally, we show that the invariant measure for the perturbed system is continuous in the Hutchinson metric.

Size dependent torsional vibration of a rotationally restrained circular FG nanorod via strain gradient nonlocal elasticity

  • Busra Uzun;Omer Civalek;M. Ozgur Yayli
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.175-186
    • /
    • 2024
  • Dynamical behaviors of one-dimensional (1D) nano-sized structures are of great importance in nanotechnology applications. Therefore, the torsional dynamic response of functionally graded nanorods which could be used to model the nano electromechanical systems or micro electromechanical systems with torsional motion about the center of twist is examined based on the theory of strain gradient nonlocal elasticity in this work. The mathematical background is constructed based on both strain gradient theory and Eringen's nonlocal elasticity theory. The equation of motions and boundary conditions of radially functionally graded nanorods are derived using Hamilton's principle and then transformed into the eigenvalue analysis by using Fourier sine series. A general coefficient matrix is obtained to assemble the Stokes' transformation. The case of a restrained functionally graded nanorod embedded in two elastic springs against torsional rotation is then deeply investigated. The effect of changing the functionally graded index, the stiffness of elastic boundary conditions, the length scale parameter and nonlocal parameter are investigated in detail.

정합 조건이 만족되지 않는 불확실한 다변수 계통에 대한 슬라이딩 모드 제어기의 설계 (Design of Sliding Mode Controller for Uncertain Multivariable Systems in the absence of Structure Matching Conditions)

  • 박귀태;김동식;임성준;서호준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.670-677
    • /
    • 1991
  • All models of dynamical systems invariably have some measure of uncertainties associated with some of their dynamics. The recent approaches to establish robustness of stabilizing feedback control against the possible uncertainties have a serious limitation, that is, their applicability only to the systems that satisfy the matching conditions. Such conditions are rarely met in general applications. If a particular system satisfies the matching conditions, the addition of an actuator will destroy the satisfaction of such conditions. In this paper, we develop robust control algorithm for uncertain multivariable systems in which the matching conditions are not necessarily met. In order to eliminate an influence over partial state variables due to unknown constant disturbances we perform the appropriate block-decomposition for a given system. Functional observers are introduced to estimate the unknown constant disturbances. The sliding mode controller is designed in such a way that the partial state variables in the state-space are directed towards switching surfaces and regulated to the origin asymptotically. Numerical examples are discussed as illustrations.

  • PDF

On autonomous decentralized evolution of holon network

  • Honma, Noriyasu;Sato, Mitsuo;Abe, Kenichi;Takeda, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.498-503
    • /
    • 1994
  • The paper demonstrates that holon networks can be used effectively for identification of nonlinear dynamical systems. The emphasis of the paper is on modeling of complicated systems which have a great deal of uncertainty and unknown interactions between their elements and parameters. The concept of applying a quantitative model building, for example, to environmental or ecological systems is not new. In a previous paper we presented a holon network model as an another alternative to quantitative modeling. Holon networks have a hierarchical construction where each level of hierarchy consists of networks with reciprocal actions among their elements. The networks are able to evolve by self-organizing their structure and adapt their parameters to environments. This was achieved by an autonomous decentralized adaptation algorithm. In this paper we propose a new emergent evolution algorithm. In this algorithm the initial holon networks consists of only a few elements and it grows gradually with each new observation in order to fit their function to the environment. Some examples show that this algorithm can lead to a network structure which has sufficient flexibility and adapts well to the environment.

  • PDF

Alternative approach for the derivation of an eigenvalue problem for a Bernoulli-Euler beam carrying a single in-span elastic rod with a tip-mounted mass

  • Gurgoze, Metin;Zeren, Serkan
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1105-1126
    • /
    • 2015
  • Many vibrating mechanical systems from the real life are modeled as combined dynamical systems consisting of beams to which spring-mass secondary systems are attached. In most of the publications on this topic, masses of the helical springs are neglected. In a paper (Cha et al. 2008) published recently, the eigencharacteristics of an arbitrary supported Bernoulli-Euler beam with multiple in-span helical spring-mass systems were determined via the solution of the established eigenvalue problem, where the springs were modeled as axially vibrating rods. In the present article, the authors used the assumed modes method in the usual sense and obtained the equations of motion from Lagrange Equations and arrived at a generalized eigenvalue problem after applying a Galerkin procedure. The aim of the present paper is simply to show that one can arrive at the corresponding generalized eigenvalue problem by following a quite different way, namely, by using the so-called "characteristic force" method. Further, parametric investigations are carried out for two representative types of supporting conditions of the bending beam.

Synchronization of Dynamical Happiness Model

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.91-97
    • /
    • 2014
  • Chaotic dynamics is an active research area in fields such as biology, physics, sociology, psychology, physiology, and engineering. Interest in chaos is also expanding to the social sciences, such as politics, economics, and societal events prediction. Most people pursue happiness, both spiritual and physical in many cases. However, happiness is not easy to define, because people differ in how they perceive it. Happiness can exist in mind and body. Therefore, we need to be happy in both simultaneously to achieve optimal happiness. To do this, we need to synchronize mind and body. In this paper, we propose a chaotic synchronization method in a mathematical model of happiness organized by a second-order ordinary differential equation with external force. This proposed mathematical happiness equation is similar to Duffing's equation, because it is derived from that equation. We introduce synchronization method from our mathematical happiness model by using the derived Duffing equation. To achieve chaotic synchronization between the human mind and body, we apply an idea of mind/body unity originating in Oriental philosophy. Of many chaotic synchronization methods, we use only coupled synchronization, because this method is closest to representing mind/body unity. Typically, coupled synchronization can be applied only to non-autonomous systems, such as a modified Duffing system. We represent the result of synchronization using a differential time series mind/body model.

스카라형 이중 아암 로봇의 실시간 퍼지제어기 실현 (Implementation of Real-Time Fuzzy Controller for SCARA Type Dual-Arm Robot)

  • 김홍래;한성현
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1223-1232
    • /
    • 2004
  • We present a new technique to the design and real-time implementation of fuzzy control system basedon digital signal processors in order to improve the precision and robustness for system of industrial robot in this paper. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a Fuzzy Logic Controller, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult Self-Organizing Fuzzy Controller is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed Self-Organizing Fuzzy Controller scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm

  • Bevrani, Hassan;Hiyama, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.117-127
    • /
    • 2007
  • Many real world control systems usually track several control objectives, simultaneously. At the moment, it is desirable to meet all specified goals using the controllers with simple structures like as proportional-integral (PI) and proportional-integral-derivative (PID) which are very useful in industry applications. Since in practice, these controllers are commonly tuned based on classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications. This paper addresses a new method to bridge the gap between the power of optimal multiobjective control and PI/PID industrial controls. First the PI/PID control problem is reduced to a static output feedback control synthesis through the mixed $H_2/H_{\infty}$ control technique, and then the control parameters are easily carried out using an iterative linear matrix inequalities (ILMI) algorithm. Numerical examples on load-frequency control (LFC) and power system stabilizer (PSS) designs are given to illustrate the proposed methodology. The results are compared with genetic algorithm (GA) based multiobjective control and LMI based full order mixed $H_2/H_{\infty}$ control designs.

Dynamic responses of a beam with breathing cracks by precise integration method

  • Cui, C.C.;He, X.S.;Lu, Z.R.;Chen, Y.M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.891-902
    • /
    • 2016
  • The beam structure with breathing cracks subjected to harmonic excitations was modeled by FEM based on Euler-Bernoulli theory, and a piecewise dynamical system was deduced. The precise integration method (PIM) was employed to propose an algorithm for analyzing the dynamic responses of the deduced system. This system was first divided into linear sub-systems, between which there are switching points resulted from the breathing cracks. The inhomogeneous terms due to the external excitations were tackled by introducing auxiliary variables to express the harmonic functions, hence the sub-systems are homogeneous. The PIM was then applied to solve the homogeneous sub-systems one by one. During the procedures, a predictor-corrector algorithm was presented to determine the switching points accurately. The presented method can provide solutions with an accuracy to a magnitude of $10^{-12}$ compared with exact solutions obtained by the theories of ordinary differential equations. The PIM results are much more accurate than Newmark ones with the same time step. Moreover, it is found that the PIM can maintain a high level of accuracy even when the time step increases within a relatively wide range.