• Title/Summary/Keyword: dynamical systems

Search Result 444, Processing Time 0.029 seconds

KATOK-HASSELBLATT-KINEMATIC EXPANSIVE FLOWS

  • Huynh, Hien Minh
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.151-170
    • /
    • 2022
  • In this paper we introduce a new notion of expansive flows, which is the combination of expansivity in the sense of Katok and Hasselblatt and kinematic expansivity, named KH-kinematic expansivity. We present new properties of several variations of expansivity. A new hierarchy of expansive flows is given.

A NOTE ON CHAIN TRANSITIVITY OF LINEAR DYNAMICAL SYSTEMS

  • Namjip Koo;Hyunhee Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.99-105
    • /
    • 2023
  • In this paper we study some topological modes of recurrent sets of linear homeomorphisms of a finite-dimensional topological vector space. More precisely, we show that there are no chain transitive linear homeomorphisms of a finite-dimensional Banach space having the shadowing property. Then, we give examples to illustrate our results.

SYMBOLICALLY EXPANSIVE DYNAMICAL SYSTEMS

  • Oh, Jumi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.85-90
    • /
    • 2022
  • In this article, we consider the notion of expansiveness on compact metric spaces for symbolically point of view. And we show that a homeomorphism is symbolically countably expansive if and only if it is symbolically measure expansive. Moreover, we prove that a homeomorphism is symbolically N-expansive if and only if it is symbolically measure N-expanding.

A Full Order Sliding Mode Tracking Controller For A Class of Uncertain Dynamical System

  • Ahmad, M.N.;Nawawi, S.W.;Osman, J.H.S
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1853-1858
    • /
    • 2004
  • This paper presents the development of a full order sliding mode controller for tracking problem of a class of uncertain dynamical system, in particular, the direct drive robot manipulators. By treating the arm as an uncertain system represented by its nominal and bounded parametric uncertainties, a new robust fullorder sliding mode tracking controller is derived such that the actual trajectory tracks the desired trajectory as closely as possible despite the non-linearities and input couplings present in the system. A proportional-integral sliding surface is chosen to ensure the stability of overall dynamics during the entire period i.e. the reaching phase and the sliding phase. Application to a three DOF direct drive robot manipulator is considered.

  • PDF

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

DYNAMICS ON AN INVARIANT SET OF A TWO-DIMENSIONAL AREA-PRESERVING PIECEWISE LINEAR MAP

  • Lee, Donggyu;Lee, Dongjin;Choi, Hyunje;Jo, Sungbae
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.583-597
    • /
    • 2014
  • In this paper, we study an area-preserving piecewise linear map with the feature of dangerous border collision bifurcations. Using this map, we study dynamical properties occurred in the invariant set, specially related to the boundary of KAM-tori, and the existence and stabilities of periodic orbits. The result shows that elliptic regions having periodic orbits and chaotic region can be divided by smooth curve, which is an unexpected result occurred in area preserving smooth dynamical systems.

Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • So, Myeong Ok;Ryu, Gil Su;Lee, Jun Tak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.101-101
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.