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STABILITY OF CLOSED SETS IN FLOWS ON
TVS-CONE METRIC SPACES

KyuNGg Bok LEe*

ABSTRACT. The concept of the stability is very important in dy-
namical systems. This paper is devoted to the study some proper-
ties of stability on a TV S-cone metric space.

1. Introduction and Preliminaries

Stability has been studied in the continuous flow (X, f) on an ar-
bitrary metric space X by N.P. Bhatia and G.P. Szego [2], and in the
compact closed relation dynamical systems by G.S. Kim and K.B. Lee
[5]. Recently Long-Guang and Xian [1] generalized the notion of met-
ric space by replacing the set of real numbers by an ordered Banach
space, defined a cone metric space. 1. Beg, A. Abbas, and M. Arshad
[3] introuduced a topological vector space valued cone metric space(or
shortly TVS-cone metric space). The purpose of this paper is to study
some properties of stability in TVS-cone metric space.

We first mention some definitions and theorems.

DEFINITION 1.1. [1] Let E be a real Banach space. A nonempty
convex closed subset P C E is called a cone in E if

1) P is closed, nonempty, and P # {Og} where Op is the zero vector
in B,

2) if x,y € P, then ax + by € P for a,b >0 a,b € R,

3)If x € Pand —x € P, then z = 0.

Given a cone P C FE, we define a partial ordering < with respect to
P by z 2y if and only if y — x € P. We shall write x < y to indicate
that z < y but « # y, while x < y will stand for y — z € IntP, IntP
dentoes the interior of P.
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DEFINITION 1.2. [1] Let X be a nonempty set and let E be a Banach
space with a cone P. We say (X, d) is a cone metric space if the mapping
d: X x X — E satisfies

(1) 0p = d(x,y) for all z,y € X and d(x,y) = Og if and only if z = y,

(2) d(z,y) = d(y,x) for all z,y € X,

(3) d(z,y) < d(z,2) +d(z,y) for all z,y,z € X.

In the case of general metric spaces, the negation of d(a,b) > c is
d(a,b) < ¢, but it does not hold in the cone metric space, which is
shown in the following example.

EXAMPLE 1.3. Let E = R? and P = {(z,y) : > 0, y > 0}. Then
P is the cone of R? under the partial ordering: (x1,y1) = (w2,y2) iff
x1 < 9 and y; < yo. Also it is clear that Int(P) = {(z,y) : > 0,y >
0} #0. Let X = R? and defined : X x X — E by d((z1,y1), (z2,92)) =
(lx1 — x2|,|y1 — y2|). Then d is a cone metric on X. Let a = (0,2),
b= (1,0) and ¢ = (2,1). Then d(a,b) = (1,2) € IntP and ¢ € IntP but
d(a,b)) A c and ¢ 4 d(a,b).

DEFINITION 1.4. [1] Let (X,d) be a cone metric space. Let {z,} be
a sequence in X and x € X. {x,} is said to be convergent and {z,}
converges to x if for every ¢ € E with Og < ¢ there is an N € N such
that for all n > N, d(z,,x) < c¢. We denote this by x,, -

LEMMA 1.5. [4] Let P be a TVS-cone of a topological vector space
FE and x,y € E. Then the following statements hold:

1) If 0O < z, then O < ax for each a € RT.

2)Ifr<yandp=gq,thenx+p<y+q.

3) If 0p < x and O < y, then there is z € E such that Op < z,
z< xand z L y.

THEOREM 1.6. [4] Let (X, d) be a TVS-cone metric space. Put 8 =
{B(z,€) : € X and O < €}, where B(z,¢) = {y € X : d(z,y) < €}.
Then B is a base for some topology on X.

In this paper, we always suppose that a cone P is a TVS-cone of
a topological vector space E and a TVS-cone metric space (X,d) is a
topological space with the topology &, which is generated by 8.

THEOREM 1.7. A T'VS-cone metric space X is first countable.

Proof. Let Op < € be given. We show that {B(z, L) :n =1,2,3,---}
is a conuntable basis at x for any x € X. For any § > Op define a map
0:E— Eby6(v)=v+0. Since §(0g) = § € IntP and 6 is continuous,
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there exists a symmetric neighborhood U of 0 such that §(U) C IntP.
Since %e }—> Og, there is a natural number m such that %e € U. Since

—Lee -U=U,6—Le=0(—Le) € 0(U) C IntP. Therefore te < 4.
Hence B(z, 2¢) C B(z,6). O

Now we define a flow and also define the positive semi-trajectory,
positive limit set, and positive prolongational limit set and study some

properties of them on a TVS-cone metric space.

DEFINITION 1.8. Let (X, d) be a TVS-cone metric space. A flow on
X is the triplet (X,R, f), where f is a map from the product space
X X R into the space X satisfying the following axioms;

(1) (Identity axiom) f(z,0) = x for every x € X;

(2) (Group axiom) f(f(x,t1),t2) = f(x,t1 +t2) for every x € X and
t1,to € R;

(3) (Continuous axiom) f is continuous:

In the sequel we shall generally delete the symbol f. Thus the image
f(z,t) will be written simply as xt.

DEFINITION 1.9. [2] Define maps v, A+, and J* from X into 2% by
defining for any x € X,

yH(@) = {zt : t € R}, AT (z) = {y € X : there is a sequence {t,}
in Rt with ¢, — +oc and xt, = y}, JT(x) = {y € X : there is

a sequence{r,} in X and a sequence {t,} in RT such that z, gt
tn — +oo, and z,t, }% y}.
For any z € X, the sets y"(z), AT(z) and J*(z) are called the

positive semi-trajectory, positive (or omega) limit set, and positive pro-
longational limit set of x, respectively.

THEOREM 1.10. Let x € X.
(1) AT (z), J*(x) are closed invariant sets.

(2) vt (z) = 7" (z) UAT(2).
(3) If vt (x) is compact, then At (x) # 0.

Proof. (1) Let {y,} be a sequence in A™(z) with y, < For each

k since y, € At (x), there is a sequence {t¥} in R* with t¥ — +o00 and
:Etfl }—> yr. For any € > Op we may assume without loss of generality

that d(yk, ztk) < 1€ and t& > k for n > k. Consider now the sequence
{tn} in RT with ¢, = . Then ¢, — +oo and we claim that zt, =V

To see that, observe that
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d(y, wtn) 2 d(y, yn) + d(Yn, otn) < d(y,yn) + L€

Since %e and d(y, yn) tend to the zero vector we conclude that d(y, xt,)
is converges to Og. Consequently, xt, ? y and y € AT (x). Therefore
AT (z) is closed.

Let y € AT(z) and ¢t € R. Then there is a sequence {t,} in RT with
tn, — +oo and xt, <Y Then by the continuity axiom (xty)t < yt.
Since (zty)t = x(ty, +t) and ¢, +t — 400 we have yt € AT (z) and
AT (z) is invariant.

Let {y,} be a sequence in J*(x) with y, < V€ X. For each k

since yx € J¥(x), there are sequences {zF} in X and {t¢} in R* such
that ¥ = F € X, th — +oo and zFtk ~ Yk For any € > O we

may assume without loss of generality that d(z,zF) < %e, th > k and
d(yr, 25tk) < 1€ for all n > k. Consider now the sequences {z,,} in X
and {t,} in RT with z,, = 2" and ¢, = t". Then t, — +o0, =, gl
and we claim that x,t, ? 1.

To see that, observe that

d(y, ntn) = d(Y, yn) + d(Yn, Tntn) < d(y,yn) + %6

Since d(y, y,) and %e tend to O we conclude that d(y, z,ty) ? 0g.
Consequently, x,t, <Y and y € J*(z). Therefore J*(z) is closed.

Let y € J™(x) and t € R. Then there are sequences {x,} in X and
{t,} in Rt such that z, — T € X, t, — +oo and z,t, =V Then
by the continuity axiom (z,t,)t < yt. Since (zptp)t = xp(tn +t) and

tn +t — +00 we have yt € JT(z) and J* () is invariant.
(2) For this recall that " (z) = 2R™*. By the definition of A*(z) we

have v*(z) UAT(z) C v*H(x). To see that v (z) C v+ (z) UAT(x), let
y € yt(z). Then there is a sequence {y,} in v*(z) such that y, < Y

Now y,, = xt,, for a t, € RT. Either the sequence {t,} has the property
that ¢, — +oo, in which case y € AT (z), or there is a subsequence
tn, — t € RT (as RT is closed). But zt,, — @t € v+ (z), and since

xtp, <Y we have y = xt € v (x). Thus vt (x) C v (x) UAT ().

(3) Let x,, = zn. Then {z,} is a sequence in y*(z). Since y*(x) is
compact, {xy} has a convergent subsequence {z, }. Let x,, <Y Then
y € AT (x) # 0. O

ProposITION 1.11. A TVS-cone metric space X is Hausdorff.
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Proof. Let z,y € X with z # y and let ¢ > Op be given. If
B(z,Le) N B(y, Le) # 0 for any natural number n, then we can choose

zn € B(z,2e) N B(y, Le). Since 0 < d(z,y) = d(z,2y) + d(zn,y) <

1 1.2 2 _ o o
—€+4 e = Ze and Ze = Og, d(xz,y) = 0g. This is a contradiction.
Thus there is a natrual number n such that B(z, 2e) N B(y, Le) = 0.
Therefore X is Hausdorff. O

ProprosSITION 1.12. Let X be a locally compact TVS-cone metric
space and M be a compact subset of X. Then there exists an € > Og

such that B(M,e) C U for any neighborhood U of M and B(M,e) is
compact.

Proof. Since X is Hausdorff locally compact, there exists a neighbor-
hood V of M such that V C U and V is compact. For every z € M we
can find €(x) > Op so that B(z,e(z)) C V. Since {B(z, 3e(z)) : z € M}
is an open cover of M and M is compact, we can find z1,z2, - ,z, € M
so that M C UP_, B(wy, 3€(zy)). By Lemma 1.5, there exists an € > Op
such that € < 1e(z1), -+, € < e(xy,). For any y € B(M, €) we can find
x € M such that d(z,y) < e. Choose k with d(zy, ) < ie(zy), and
d(zg,y) 2 d(zg, z) +d(x,y) < %e(xk) +ek %e(xk) + %e(a;k) = e(xg). It
means that y € B(xy,€(zy)). Therefore B(M,e) C Up_, B(xy, e(z)) C

V. Hence B(M,¢) CV C U and B(M,¢) is compact. O

PRrOPOSITION 1.13. Let X be locally compact T'VS-cone metric space.
Then A (z) # () whenever J*(x) is nonempty and compact.

Proof. Suppose that AT(z) = 0. Since y*(z) = v (z) UAT(z) =
yH(z), v (z) is a closed set. If vT(x) N J*(z) # 0, then yvT(z) C
J*(z) because of J(x) is invariant. Since J*(z) is compact, y*(z) is
also compact. By Theorem 1.10, A (z) # (. This is a contradiction.
Therefore v (x) N J*(z) = 0. By Proposition 1.11, there exists an
€ > Op such that B(J*(z),e) Ny (x) = 0 and B(J*+(z),€) is compact.
If y € B(J*(x), 3¢) N B(x, 3¢), then there exists z € J*(z) such that
d(z,y) < 3e and d(z,z) < d(z,y)+d(y,z) < te+ 3€ = €. It means that
z € B(J(z),e)N~yT(x). This is a contradiction. Hence B(JT(z), ¢) N
B(z, 3¢) = 0.

Let y € J(x). There exist sequence {z,} in X and {t,} in RT
such that xz,, }—> r, t, — +oo and z,t, }—> y. We can suppose that

Tn € B(z,%e) and x,t, € B(J(2),%€) for all n. Since z,[0,t,] is

connected, there is a 0 < 7, < t,, such that x,7,, € dB(J ¥ (z), 1

, 5€). Since



324 Kyung Bok Lee

{zn7n} is a sequence in dB(JT(z), 3¢) and dB(J (), 3€) is compact,

{x, 7y} has a convergent subsequence. Let x,,7, ;{» z.
If 7, — 7, then z,7, = T It means that 0B(J " (), 3¢) Ny (2) #

(. This is a contradiction. If 7, — +00, then z € JT(z), i.e., 0B(J T (2), 3¢
JT(z) # (0. This is a contradiction. Hence A1 (x) # 0. O

2. Main theorem

Stability has been studied in a flow f: X x R — X on an arbitrary
metric space X by N.P. Bhatia and G.P. Szego [2]. We look into the
stability in a flow f: X xR — X on a TVS-cone metric space X.

Let X be a TVS-cone metric space and f : X Xx R — X be a flow on
X. For A C X, we denote 7y (A) = Ugeay™ (a).

DEFINITION 2.1. Let M be a closed subset of X. M is said to be
stable if for every x € M and € > Op there exists a § > Op such that
vyt (B(z,8)) € B(M,e). M is said to be uniformly stable if for every
x & M there exists an € > 0g such that @ ¢ v+ (B(M,¢)). M is said to
be Lyapunov stable if for every € > Og there exists a § > Og such that
yH(B(M,)) C B(M,e).

THEOREM 2.2. Let M be a closed subset of X. If M is Lyapunov
stable, then M is stable and uniformly stable.

Proof. Since M is Lyapunov stable, for any € > Og, there exists a d >
0 such that v (B(M,d)) € B(M,e). v (B(z,0)) C v (B(M,d)) C
B(M,e¢) for every x € M. Hence M is stable.

Let © ¢ M. Since X — M is an open set, there exists an € > Of
such that B(z,e) C X — M. Since M is Lyapunov stable, there exists
a § > O such that y"(B(M,d)) C B(M, 3¢). Suppose that B(z, €) N
YH(B(M,0)) # 0. We can find y € B(z,3€) Ny (B(M,d)). Since
y € vH(B(M,8)) C B(M, Je), there exists z € M such that d(z,y) < 1.
Since d(z,z) < d(z,y) +d(y,2z) < te+3e =€, 2 € B(z,e) C X — M.
This is a contradiction. Hence B(z,1e) Ny (B(M,5)) = . Therefore
x &yt (B(M,J)). It means that M is uniformly stable. O

THEOREM 2.3. If a compact subset M of X is stable, then M is
Lyapunov stable.

Proof. Let € > 0p be given. Since M is stable, for every x € M
there exists a d; > O such that v (B(z,d(z))) € B(M,e). Since

)N
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{B(z,16(x)) : « € M} is an open cover of M and M is compact, there
exist finitely many x1, 9, - - , 2, € M such that M C U}_, B(xy, %5(:%))
By Lemma 1.5, there exsits an o >> Og such that o < %5(;1:1), eLa K
26(zy)). For any y € B(M,«), there exist z € M and k such that
d(z,y) < aand x € B(wzy, 36(2x)). Since d(zy,y) < d(zk, v)+d(z,y) <
56(zg)+36(zg) = 8(zx), we have y € B(zy, §(xy)). Therefore B(M, a) C
k=1 Bk, 6(21))-

Since y7(B(M, a)) C v (Up_y B(wg, 6(2))) = Up_1 7" (B(a, 0(xk)))

C B(M, «), we see that M is Lyapunov stable. O

THEOREM 2.4. Let X be sequentially compact. If a closed subset M
of X is uniformly stable, then M is Lyapunov stable.

Proof. Suppose that M is not Lyapunov stable. Then there exsits
an € > Op such that for any 6 > Og, v"(B(M,d)) ¢ B(M,e). For
every positive integer n since v (B(M, 2¢)) ¢ B(M,e), there exists
Yn € YT(B(M,Le)) — B(M,e). We can find an z,, € B(M,2e) so
that y, € y(z,). Since X is sequentially compact, {y,} has a con-
vergent subsequence. Let y, ? y € X. Since y, € X — B(M,e),

ye€ X —B(M,e) = X —B(M,e¢), we have y ¢ M. Since M is Lyapunov
stable there exists a § > Og such that y & y+(B(M,0)) and ¢ € IntP.
Define a map # : E — E by 6(v) = v+ . Since §(0g) = § € IntP
and 0 is continuous there exists a symmetric neighborhood U of O
such that 0(U) C IntP. Since le = Op and y, <Y there exists a n

such that Le € U and y, € X — yT(B(M,6)). Since —1e € —U = U,
§—Le=0(—Le) € 6(U) C IntP. Thus 1e < . Hence y, € v*(z,) C
YH(B(M, Xe)) C v (B(M,6)) C v+(B(M,5)). This is a contradiction.
Thus M is Lyapunov stable. O

THEOREM 2.5. Let M be a closed subset of X. If M is stable or
uniformly stable, M is positively invariant.

Proof. Suppose that there exists x € M and t > 0 such that xt & M.
Since X — M is open there exsits an € > 0 such that B(zt,e) C X — M.
Suppose M is stable. There exists a § > Op such that v+ (B(z,d)) C
B(M,e¢). Since zt € yt(z) C v (B(z,0)) C B(M,¢) there is y € M
such that d(y,zt) < ¢, i.e., B(xt,e) C X — M. This is a contradiction.
Suppose M is uniformly stable. There exists an € > O such that
xt € yH(B(M,e€)). But at € v (z) C v (B(M,€)) C v (B(M,e€)). This
is a contradiction. So M is positively invariant. O
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COROLLARY 2.6. If a closed subset M of X is Lyapunov stable, then
M is positively invariant.
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