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STABILITY OF CLOSED SETS IN FLOWS ON

TVS-CONE METRIC SPACES

Kyung Bok Lee*

Abstract. The concept of the stability is very important in dy-
namical systems. This paper is devoted to the study some proper-
ties of stability on a TVS-cone metric space.

1. Introduction and Preliminaries

Stability has been studied in the continuous flow (X, f) on an ar-
bitrary metric space X by N.P. Bhatia and G.P. Szego [2], and in the
compact closed relation dynamical systems by G.S. Kim and K.B. Lee
[5]. Recently Long-Guang and Xian [1] generalized the notion of met-
ric space by replacing the set of real numbers by an ordered Banach
space, defined a cone metric space. I. Beg, A. Abbas, and M. Arshad
[3] introuduced a topological vector space valued cone metric space(or
shortly TVS-cone metric space). The purpose of this paper is to study
some properties of stability in TVS-cone metric space.

We first mention some definitions and theorems.

Definition 1.1. [1] Let E be a real Banach space. A nonempty
convex closed subset P ⊂ E is called a cone in E if

1) P is closed, nonempty, and P 6= {0E} where 0E is the zero vector
in E,

2) if x, y ∈ P , then ax+ by ∈ P for a, b ≥ 0 a, b ∈ R,
3) If x ∈ P and −x ∈ P , then x = 0E .
Given a cone P ⊂ E, we define a partial ordering � with respect to

P by x � y if and only if y − x ∈ P . We shall write x ≺ y to indicate
that x � y but x 6= y, while x � y will stand for y − x ∈ IntP , IntP
dentoes the interior of P .

Received Mar 14, 2019; Accepted Jul 21, 2019.
2010 Mathematics Subject Classification: Primary 12A34, 56B34; Secondary

78C34.
Key words and phrases: TVS-cone metric space, flow, stability.



320 Kyung Bok Lee

Definition 1.2. [1] Let X be a nonempty set and let E be a Banach
space with a cone P . We say (X, d) is a cone metric space if the mapping
d : X ×X → E satisfies

(1) 0E � d(x, y) for all x, y ∈ X and d(x, y) = 0E if and only if x = y,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

In the case of general metric spaces, the negation of d(a, b) ≥ c is
d(a, b) < c, but it does not hold in the cone metric space, which is
shown in the following example.

Example 1.3. Let E = R2 and P = {(x, y) : x ≥ 0, y ≥ 0}. Then
P is the cone of R2 under the partial ordering: (x1, y1) � (x2, y2) iff
x1 ≤ x2 and y1 ≤ y2. Also it is clear that Int(P ) = {(x, y) : x > 0, y >
0} 6= ∅. Let X = R2 and define d : X ×X → E by d((x1, y1), (x2, y2)) =
(|x1 − x2|, |y1 − y2|). Then d is a cone metric on X. Let a = (0, 2),
b = (1, 0) and c = (2, 1). Then d(a, b) = (1, 2) ∈ IntP and c ∈ IntP but
d(a, b)) 6� c and c 6≺ d(a, b).

Definition 1.4. [1] Let (X, d) be a cone metric space. Let {xn} be
a sequence in X and x ∈ X. {xn} is said to be convergent and {xn}
converges to x if for every c ∈ E with 0E � c there is an N ∈ N such
that for all n > N , d(xn, x)� c. We denote this by xn −→

X
x.

Lemma 1.5. [4] Let P be a TVS-cone of a topological vector space
E and x, y ∈ E. Then the following statements hold:

1) If 0E � x, then 0E � ax for each a ∈ R+.
2) If x� y and p � q, then x+ p� y + q.
3) If 0E � x and 0E � y, then there is z ∈ E such that 0E � z,

z � x and z � y.

Theorem 1.6. [4] Let (X, d) be a TVS-cone metric space. Put B =
{B(x, ε) : x ∈ X and 0E � ε}, where B(x, ε) = {y ∈ X : d(x, y) � ε}.
Then B is a base for some topology on X.

In this paper, we always suppose that a cone P is a TVS-cone of
a topological vector space E and a TVS-cone metric space (X, d) is a
topological space with the topology =, which is generated by B.

Theorem 1.7. A TVS-cone metric space X is first countable.

Proof. Let 0E � ε be given. We show that {B(x, 1nε) : n = 1, 2, 3, · · · }
is a conuntable basis at x for any x ∈ X. For any δ � 0E define a map
θ : E → E by θ(v) = v+ δ. Since θ(0E) = δ ∈ IntP and θ is continuous,
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there exists a symmetric neighborhood U of 0E such that θ(U) ⊂ IntP .
Since 1

nε −→X 0E , there is a natural number m such that 1
mε ∈ U . Since

− 1
mε ∈ −U = U , δ − 1

mε = θ(− 1
mε) ∈ θ(U) ⊂ IntP . Therefore 1

mε� δ.

Hence B(x, 1
mε) ⊂ B(x, δ).

Now we define a flow and also define the positive semi-trajectory,
positive limit set, and positive prolongational limit set and study some
properties of them on a TVS-cone metric space.

Definition 1.8. Let (X, d) be a TVS-cone metric space. A flow on
X is the triplet (X,R, f), where f is a map from the product space
X × R into the space X satisfying the following axioms;

(1) (Identity axiom) f(x, 0) = x for every x ∈ X;
(2) (Group axiom) f(f(x, t1), t2) = f(x, t1 + t2) for every x ∈ X and

t1, t2 ∈ R;
(3) (Continuous axiom) f is continuous:

In the sequel we shall generally delete the symbol f . Thus the image
f(x, t) will be written simply as xt.

Definition 1.9. [2] Define maps γ+, Λ+, and J+ from X into 2X by
defining for any x ∈ X,
γ+(x) = {xt : t ∈ R}, Λ+(x) = {y ∈ X : there is a sequence {tn}

in R+ with tn → +∞ and xtn −→
X

y}, J+(x) = {y ∈ X : there is

a sequence{xn} in X and a sequence {tn} in R+ such that xn −→
X

x,

tn → +∞, and xntn −→
X

y}.
For any x ∈ X, the sets γ+(x), Λ+(x) and J+(x) are called the

positive semi-trajectory, positive (or omega) limit set, and positive pro-
longational limit set of x, respectively.

Theorem 1.10. Let x ∈ X.
(1) Λ+(x), J+(x) are closed invariant sets.

(2) γ+(x) = γ+(x) ∪ Λ+(x).

(3) If γ+(x) is compact, then Λ+(x) 6= ∅.
Proof. (1) Let {yn} be a sequence in Λ+(x) with yn −→

X
y. For each

k since yk ∈ Λ+(x), there is a sequence {tkn} in R+ with tkn → +∞ and
xtkn −→

X
yk. For any ε � 0E we may assume without loss of generality

that d(yk, xt
k
n) � 1

k ε and tkn ≥ k for n ≥ k. Consider now the sequence
{tn} in R+ with tn = tnn. Then tn → +∞ and we claim that xtn −→

X
y.

To see that, observe that
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d(y, xtn) � d(y, yn) + d(yn, xtn)� d(y, yn) + 1
nε.

Since 1
nε and d(y, yn) tend to the zero vector we conclude that d(y, xtn)

is converges to 0E . Consequently, xtn −→
X

y and y ∈ Λ+(x). Therefore

Λ+(x) is closed.
Let y ∈ Λ+(x) and t ∈ R. Then there is a sequence {tn} in R+ with

tn → +∞ and xtn −→
X

y. Then by the continuity axiom (xtn)t −→
X

yt.

Since (xtn)t = x(tn + t) and tn + t → +∞ we have yt ∈ Λ+(x) and
Λ+(x) is invariant.

Let {yn} be a sequence in J+(x) with yn −→
X

y ∈ X. For each k

since yk ∈ J+(x), there are sequences {xkn} in X and {tkn} in R+ such
that xkn −→

X
x ∈ X, tkn → +∞ and xknt

k
n −→

X
yk. For any ε � 0E we

may assume without loss of generality that d(x, xkn) � 1
k ε, t

k
n ≥ k and

d(yk, x
k
nt

k
n) � 1

k ε for all n ≥ k. Consider now the sequences {xn} in X
and {tn} in R+ with xn = xnn and tn = tnn. Then tn → +∞, xn −→

X
x

and we claim that xntn −→
X

y.

To see that, observe that
d(y, xntn) � d(y, yn) + d(yn, xntn)� d(y, yn) + 1

nε.

Since d(y, yn) and 1
nε tend to 0E we conclude that d(y, xntn) −→

X
0E .

Consequently, xntn −→
X

y and y ∈ J+(x). Therefore J+(x) is closed.

Let y ∈ J+(x) and t ∈ R. Then there are sequences {xn} in X and
{tn} in R+ such that xn −→

X
x ∈ X, tn → +∞ and xntn −→

X
y. Then

by the continuity axiom (xntn)t −→
X

yt. Since (xntn)t = xn(tn + t) and

tn + t→ +∞ we have yt ∈ J+(x) and J+(x) is invariant.
(2) For this recall that γ+(x) = xR+. By the definition of Λ+(x) we

have γ+(x) ∪ Λ+(x) ⊂ γ+(x). To see that γ+(x) ⊂ γ+(x) ∪ Λ+(x), let

y ∈ γ+(x). Then there is a sequence {yn} in γ+(x) such that yn −→
X

y.

Now yn = xtn for a tn ∈ R+. Either the sequence {tn} has the property
that tn → +∞, in which case y ∈ Λ+(x), or there is a subsequence
tnk
→ t ∈ R+ (as R+ is closed). But xtnk

−→
X

xt ∈ γ+(x), and since

xtnk
−→
X

y we have y = xt ∈ γ+(x). Thus γ+(x) ⊂ γ+(x) ∪ Λ+(x).

(3) Let xn = xn. Then {xn} is a sequence in γ+(x). Since γ+(x) is
compact, {xn} has a convergent subsequence {xnk

}. Let xn −→
X

y. Then

y ∈ Λ+(x) 6= ∅.
Proposition 1.11. A TVS-cone metric space X is Hausdorff.



Stability of closed sets in flows on TVS-cone metric spaces 323

Proof. Let x, y ∈ X with x 6= y and let ε � 0E be given. If
B(x, 1nε) ∩ B(y, 1nε) 6= ∅ for any natural number n, then we can choose

xn ∈ B(x, 1nε) ∩ B(y, 1nε). Since 0E � d(x, y) � d(x, xn) + d(xn, y) �
1
nε + 1

nε = 2
nε and 2

nε −→X 0E , d(x, y) = 0E . This is a contradiction.

Thus there is a natrual number n such that B(x, 1nε) ∩ B(y, 1nε) = ∅.
Therefore X is Hausdorff.

Proposition 1.12. Let X be a locally compact TVS-cone metric
space and M be a compact subset of X. Then there exists an ε � 0E
such that B(M, ε) ⊂ U for any neighborhood U of M and B(M, ε) is
compact.

Proof. Since X is Hausdorff locally compact, there exists a neighbor-
hood V of M such that V ⊂ U and V is compact. For every x ∈M we
can find ε(x)� 0E so that B(x, ε(x)) ⊂ V . Since {B(x, 12ε(x)) : x ∈M}
is an open cover of M and M is compact, we can find x1, x2, · · · , xn ∈M
so that M ⊂ ∪nk=1B(xk,

1
2ε(xk)). By Lemma 1.5, there exists an ε� 0E

such that ε� 1
2ε(x1), · · · , ε�

1
2ε(xn). For any y ∈ B(M, ε) we can find

x ∈ M such that d(x, y) � ε. Choose k with d(xk, x) � 1
2ε(xk), and

d(xk, y) � d(xk, x) + d(x, y)� 1
2ε(xk) + ε� 1

2ε(xk) + 1
2ε(xk) = ε(xk). It

means that y ∈ B(xk, ε(xk)). Therefore B(M, ε) ⊂ ∪nk=1B(xk, ε(xk)) ⊂
V . Hence B(M, ε) ⊂ V ⊂ U and B(M, ε) is compact.

Proposition 1.13. LetX be locally compact TVS-cone metric space.
Then Λ+(x) 6= ∅ whenever J+(x) is nonempty and compact.

Proof. Suppose that Λ+(x) = ∅. Since γ+(x) = γ+(x) ∪ Λ+(x) =
γ+(x), γ+(x) is a closed set. If γ+(x) ∩ J+(x) 6= ∅, then γ+(x) ⊂
J+(x) because of J+(x) is invariant. Since J+(x) is compact, γ+(x) is
also compact. By Theorem 1.10, Λ+(x) 6= ∅. This is a contradiction.
Therefore γ+(x) ∩ J+(x) = ∅. By Proposition 1.11, there exists an

ε� 0E such that B(J+(x), ε) ∩ γ+(x) = ∅ and B(J+(x), ε) is compact.
If y ∈ B(J+(x), 12ε) ∩ B(x, 12ε), then there exists z ∈ J+(x) such that

d(z, y)� 1
2ε and d(z, x) � d(z, y)+d(y, x)� 1

2ε+ 1
2ε = ε. It means that

x ∈ B(J+(x), ε)∩ γ+(x). This is a contradiction. Hence B(J+(x), 12ε)∩
B(x, 12ε) = ∅.

Let y ∈ J+(x). There exist sequence {xn} in X and {tn} in R+

such that xn −→
X

x, tn → +∞ and xntn −→
X

y. We can suppose that

xn ∈ B(x, 12ε) and xntn ∈ B(J+(x), 12ε) for all n. Since xn[0, tn] is

connected, there is a 0 < τn < tn such that xnτn ∈ ∂B(J+(x), 12ε). Since
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{xnτn} is a sequence in ∂B(J+(x), 12ε) and ∂B(J+(x), 12ε) is compact,
{xnτn} has a convergent subsequence. Let xnτn −→

X
z.

If τn → τ , then xnτn −→
X

xτ . It means that ∂B(J+(x), 12ε)∩ γ
+(x) 6=

∅. This is a contradiction. If τn → +∞, then z ∈ J+(x), i.e., ∂B(J+(x), 12ε)∩
J+(x) 6= ∅. This is a contradiction. Hence Λ+(x) 6= ∅.

2. Main theorem

Stability has been studied in a flow f : X × R → X on an arbitrary
metric space X by N.P. Bhatia and G.P. Szego [2]. We look into the
stability in a flow f : X × R→ X on a TVS-cone metric space X.

Let X be a TVS-cone metric space and f : X ×R→ X be a flow on
X. For A ⊂ X, we denote γ+(A) = ∪a∈Aγ+(a).

Definition 2.1. Let M be a closed subset of X. M is said to be
stable if for every x ∈ M and ε � 0E there exists a δ � 0E such that
γ+(B(x, δ)) ⊂ B(M, ε). M is said to be uniformly stable if for every

x 6∈M there exists an ε� 0E such that x 6∈ γ+(B(M, ε)). M is said to
be Lyapunov stable if for every ε� 0E there exists a δ � 0E such that
γ+(B(M, δ)) ⊂ B(M, ε).

Theorem 2.2. Let M be a closed subset of X. If M is Lyapunov
stable, then M is stable and uniformly stable.

Proof. SinceM is Lyapunov stable, for any ε� 0E , there exists a δ �
0E such that γ+(B(M, δ)) ⊂ B(M, ε). γ+(B(x, δ)) ⊂ γ+(B(M, δ)) ⊂
B(M, ε) for every x ∈M . Hence M is stable.

Let x 6∈ M . Since X −M is an open set, there exists an ε � 0E
such that B(x, ε) ⊂ X −M . Since M is Lyapunov stable, there exists
a δ � 0E such that γ+(B(M, δ)) ⊂ B(M, 12ε). Suppose that B(x, 12ε) ∩
γ+(B(M, δ)) 6= ∅. We can find y ∈ B(x, 12ε) ∩ γ

+(B(M, δ)). Since

y ∈ γ+(B(M, δ)) ⊂ B(M, 12ε), there exists z ∈M such that d(z, y)� 1
2ε.

Since d(x, z) � d(x, y) + d(y, z) � 1
2ε + 1

2ε = ε, z ∈ B(x, ε) ⊂ X −M .

This is a contradiction. Hence B(x, 12ε) ∩ γ
+(B(M, δ)) = ∅. Therefore

x 6∈ γ+(B(M, δ)). It means that M is uniformly stable.

Theorem 2.3. If a compact subset M of X is stable, then M is
Lyapunov stable.

Proof. Let ε � 0E be given. Since M is stable, for every x ∈ M
there exists a δx � 0E such that γ+(B(x, δ(x))) ⊂ B(M, ε). Since
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{B(x, 12δ(x)) : x ∈ M} is an open cover of M and M is compact, there

exist finitely many x1, x2, · · · , xn ∈M such thatM ⊂ ∪nk=1B(xk,
1
2δ(xk)).

By Lemma 1.5, there exsits an α� 0E such that α� 1
2δ(x1), · · · , α�

1
2δ(xn)). For any y ∈ B(M,α), there exist x ∈ M and k such that

d(x, y)� α and x ∈ B(xk,
1
2δ(xk)). Since d(xk, y) � d(xk, x)+d(x, y)�

1
2δ(xk)+1

2δ(xk) = δ(xk), we have y ∈ B(xk, δ(xk)). ThereforeB(M,α) ⊂
∪nk=1B(xk, δ(xk)).

Since γ+(B(M,α)) ⊂ γ+(∪nk=1B(xk, δ(xk))) = ∪nk=1γ
+(B(xk, δ(xk)))

⊂ B(M,α), we see that M is Lyapunov stable.

Theorem 2.4. Let X be sequentially compact. If a closed subset M
of X is uniformly stable, then M is Lyapunov stable.

Proof. Suppose that M is not Lyapunov stable. Then there exsits
an ε � 0E such that for any δ � 0E , γ+(B(M, δ)) 6⊂ B(M, ε). For
every positive integer n since γ+(B(M, 1nε)) 6⊂ B(M, ε), there exists

yn ∈ γ+(B(M, 1nε)) − B(M, ε). We can find an xn ∈ B(M, 1nε) so
that yn ∈ γ+(xn). Since X is sequentially compact, {yn} has a con-
vergent subsequence. Let yn −→

X
y ∈ X. Since yn ∈ X − B(M, ε),

y ∈ X −B(M, ε) = X −B(M, ε), we have y 6∈M . Since M is Lyapunov

stable there exists a δ � 0E such that y 6∈ γ+(B(M, δ)) and δ ∈ IntP .
Define a map θ : E → E by θ(v) = v + δ. Since θ(0E) = δ ∈ IntP
and θ is continuous there exists a symmetric neighborhood U of 0E
such that θ(U) ⊂ IntP . Since 1

nε −→X 0E and yn −→
X

y there exists a n

such that 1
nε ∈ U and yn ∈ X − γ+(B(M, δ)). Since − 1

nε ∈ −U = U ,

δ − 1
nε = θ(− 1

nε) ∈ θ(U) ⊂ IntP . Thus 1
nε � δ. Hence yn ∈ γ+(xn) ⊂

γ+(B(M, 1nε)) ⊂ γ+(B(M, δ)) ⊂ γ+(B(M, δ)). This is a contradiction.
Thus M is Lyapunov stable.

Theorem 2.5. Let M be a closed subset of X. If M is stable or
uniformly stable, M is positively invariant.

Proof. Suppose that there exists x ∈M and t > 0 such that xt 6∈M .
Since X−M is open there exsits an ε� 0E such that B(xt, ε) ⊂ X−M .

Suppose M is stable. There exists a δ � 0E such that γ+(B(x, δ)) ⊂
B(M, ε). Since xt ∈ γ+(x) ⊂ γ+(B(x, δ)) ⊂ B(M, ε) there is y ∈ M
such that d(y, xt)� ε, i.e., B(xt, ε) ⊂ X −M . This is a contradiction.

Suppose M is uniformly stable. There exists an ε � 0E such that
xt 6∈ γ+(B(M, ε)). But xt ∈ γ+(x) ⊂ γ+(B(M, ε)) ⊂ γ+(B(M, ε)). This
is a contradiction. So M is positively invariant.
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Corollary 2.6. If a closed subset M of X is Lyapunov stable, then
M is positively invariant.
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