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A MULTIPLE RECURRENCE THEOREM FOR COUNTABLE

DIRECTED PARTIAL SEMIGROUP ACTIONS

Tiaoying Zeng

Abstract. We show a multiple recurrence theorem for topological

dynamical systems with countable directed partial semigroup actions,
which generalizes the well-know IP-version of multiple recurrence the-

orem proved by Furstenberg and Weiss.

1. Introduction

Recurrence is one of the central topics in the study of topological dynamics.
A classical result by Birkhoff states that if T is a continuous map from a
compact metric space X to itself, then there exist x ∈ X and an increasing
sequence {nk}∞k=1 of positive integers such that limk→∞ Tnkx = x.

In the seminal paper [5], Furstenberg and Weiss showed that the well-known
van der Waerden theorem is equivalent to the multiple recurrence theorem in
topological dynamics. They also proved the following IP-version of multiple
recurrence theorem (see Theorem 8.19 of [4] for this version).

Theorem 1.1. Let {Sα1 }, {Sα2 }, . . . , {Sα` } be ` IP-systems of maps of a com-
pact metric space X, all contained in a commutative group of homeomorphisms
of X. Then there exist a point x ∈ X and a homomorphism φ : F → F such
that

S
φ(α)
i x→ x, i = 1, 2, . . . , `.

Recently, the authors in [1] studied topological dynamical systems indexed
by directed partial semigroups. Examples of directed partial semigroup actions
are IP-systems in [5] and dynamics systems indexed by words in [2]. Under
some conditions, the authors in [1] obtained the following multiple recurrence
theorem for directed partial semigroup actions.

Theorem 1.2. Let (Λ,≺, ∗) be a directed partial semigroup and B a suitable
coideal basis for (Λ,≺, ∗) with the (D)-property. Let X be a compact metric
space and G an abelian subgroup of homeomorphisms of X. Assume that ` ≥ 1
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and {Tλi }λ∈Λ are Λ-systems on G for i = 1, . . . , `. If the systems {Tλi }λ∈Λ and
{(Tλi )−1}λ∈Λ are equicontinuous, then for every B ∈ B, there exist A ∈ B with
A ⊂ B and x ∈ X such that

lim
λ∈A

Tλi x = x, i = 1, . . . , `.

It should be noticed that Theorem 1.2 requires equicontinuity of the action,
which is a strong condition. The main idea of this paper is to prove the following
reasonable multiple recurrence theorem for directed partial semigroup actions.
We do not require the condition of equicontinuity, but the convergence that we
obtain is slightly weaker.

Theorem 1.3. Let (Λ,≺, ∗) be a directed partial semigroup and B a suitable
coideal basis for (Λ,≺, ∗) with the (D)-property. Let X be a compact metric
space and G an abelian subgroup of homeomorphisms of X. Assume that ` ≥ 1
and {Tλi }λ∈Λ are Λ-systems in G for i = 1, . . . , `. Then for every B ∈ B, there
exist x ∈ X and a sequence {λn}∞n=1 in B tending to infinity, such that

lim
n→∞

Tλn
i x = x, i = 1, . . . , `.

The organization of this paper is as follows. In Section 2, we introduce
some notions and results which will be used later. In Section 3, after some
preparation we prove the main result Theorem 1.3.

2. Preliminaries

Let N denote the set of all positive integers.

2.1. Directed set and coideal basis

Definition 2.1. Let Λ be a non-empty countable set and ≺ a relation on Λ.
If the relation ≺ satisfies the following conditions:

(1) For every λ1, λ2 ∈ Λ with λ1 ≺ λ2, λ1 6= λ2.
(2) For every λ1, λ2, λ3 ∈ Λ with λ1 ≺ λ2 and λ2 ≺ λ3, λ1 ≺ λ3.
(3) For every λ1, λ2 ∈ Λ, there exists λ3 ∈ Λ such that λ1 ≺ λ3 and

λ2 ≺ λ3.

Then we say that (Λ,≺) is a directed set.

Remark 2.2. The definition of directed partial semigroup in this paper requires
the set Λ is a non-empty countable set, while the one in reference [1] only
requires the set Λ is a non-empty infinite set.

Definition 2.3. Let (Λ,≺) be a directed set. A collection B of subsets of Λ is
a coideal basis on (Λ,≺) if it satisfies the following conditions:

(1) For every A ∈ B and λ1 ∈ Λ there exists λ2 ∈ A such that λ1 ≺ λ2.
(2) For every A ∈ B and A = A1 ∪A2 there exists B ∈ B such that either

B ⊂ A1 or B ⊂ A2.
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Let B be a coideal basis on (Λ,≺). It is clear that for every A ∈ B, (A,≺) is
also a directed set.

Definition 2.4. Let (Λ,≺) be a directed set. If a sequence {λn}∞n=1 in Λ
satisfies the following two conditions:

(1) λn ≺ λn+1, ∀n ∈ N.
(2) for every λ ∈ Λ, there exists n ∈ N such that λ ≺ λn.

Then we say that the sequence {λn}∞n=1 tends to infinity, denoted by λn →∞
as n→∞.

Definition 2.5. Let X be a non-empty set and (Λ,≺) be a directed set. We
say that a sequence {xλ}λ∈Λ in X indexed by Λ is a Λ-sequence.

Lemma 2.6. Let (Λ,≺) be a directed set and B be a coideal basis on (Λ,≺).
Let X be a compact metric space and {xλ}λ∈Λ be a Λ-sequence in X. Then for
every B ∈ B, there exist a point x ∈ X and a sequence {λn}∞n=1 in B tending
to infinity such that limn→∞ xλn

= x.

Proof. Fix a B ∈ B. Let d be a compatible metric on X. For every x ∈ X and
ε > 0, we set U(x, ε) = {y ∈ X : d(x, y) ≤ ε}. Since X is compact, we have
that X =

⋃m1

i=1 U(x1
i ,

1
2 ) for some x1

1, . . . , x
1
m1
∈ X.

Let B1 = B. Then B1 =
⋃m1

i=1 Ci, where Ci = {λ ∈ B1 : xλ ∈ U(x1
i ,

1
2 ).

As B is a coideal basis, there exist B2 ∈ B with B2 ⊆ B1 and 1 ≤ i1 ≤
m1 such that B2 ⊆ Ci1 and consequently {xλ : λ ∈ B2} ⊆ U(x1

i ,
1
2 ). We

continue analogously. Since X is compact, there exist x2
1, . . . , x

2
m2
∈ X such

that U(x1
i1
, 1

2 ) ⊆
⋃m1

i=1 U(x2
i ,

1
4 ), and consequently there exist B3 ∈ B with

B3 ⊆ A2 and 1 ≤ i2 ≤ m2 such that {xλ : λ ∈ B3} ⊆ U(x1
i1
, 1

2 ) ∩ U(x2
i2
, 1

4 ).
Inductively, we construct a sequence {Bn}∞n=1 with Bn ∈ B and B1 ⊇ B2 ⊇

· · · , and also a sequence {U(xnin ,
1

2n )}∞n=1 such that

{xλ : λ ∈ Bn+1} ⊆
n⋂
j=1

U(xjij ,
1
2j ) for every n ∈ N.

As X is compact, without loss of generality, assume that xnin → x0 ∈ X as
n → ∞. As Λ is countable, let {α1, α2, . . . , αn, αn+1, . . . } be an enumeration
of Λ. Since B is a coideal basis on (Λ,≺) and Bn ∈ B for each n ∈ N, then we
can choose a sequence {λn}∞n=1 inductively such that λn ∈ Bn, λn ≺ λn+1 and
αn ≺ λn+1 for all n ∈ N. Then {λn}∞n=1 tends to infinity and limn→∞ xλn =
x0. �

Definition 2.7 ([1]). Let (Λ,≺) be a directed set and B be a coideal basis on
(Λ,≺). We say that B has the (D)-property if for every sequence {An}∞n=1 in
B with An ⊃ An+1, there exists A ∈ B such that for every n ∈ N, there exists
kn ∈ N satisfying

max{k ∈ N : ∃λ1, . . . , λk ∈ A \An with λ1 ≺ λ2 ≺ · · · ≺ λk} ≤ kn.
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Definition 2.8. Assume that X is a topological space and {xλ}λ∈Λ is a Λ-
sequence in X. For x ∈ X, if for any neighborhood V of x there exists λ0 =
λ0(V ) ∈ Λ such that xλ ∈ X for every λ ∈ Λ with λ0 ≺ λ, then we say that the
Λ-sequence {xλ}λ∈Λ converges to x, or x is the limit point of the Λ-sequence
{xλ}λ∈Λ, which is denoted by limλ∈Λ xλ = x. It is clear that if X is Hausdorff,
then the limit of any Λ-sequence is unique.

The following result is Theorem 2.10 in [1].

Theorem 2.9. Let (Λ,≺) be a directed set and B be a coideal basis on (Λ,≺)
with the (D)-property. Assume that X is a compact metric space and {xλ}λ∈Λ

is a Λ-sequence in X. Then for every B ∈ B there exists A ∈ B with A ⊂ B
such that {xλ}λ∈A is convergent in X.

Remark 2.10. It should be noticed that if {xλ}λ∈A converges to x as an A-
sequence then there exists a sequence {λn}∞n=1 in A tending to infinity, such
that limn→∞ xλn

= x. So the conclusion of Theorem 2.9 is stronger than the
one of Lemma 2.6, but in Lemma 2.6, we do not require the coideal basis to
have the (D)-property.

2.2. G-system

Definition 2.11. Let X be a compact metric space. Denote

End(X) = {T : X → X | T is continuous} and

Aut(X) = {T : X → X | T is a homeomorphsim}.

End(X) and Aut(X) are semigroups under the composition operator of maps.
Let (G, · ) be a countable semigroup. If there exists a semigroup homomor-

phism φ : G → End(X), then we say that (X,G) is a G-system. In fact, we
also identify the element g ∈ G and its images φ(g) ∈ End(X), that is, g is
regarded as a continuous self-map on X.

Definition 2.12. Let (X,G) is a G-system and Y ⊂ X. If for every g ∈ G,
g(Y ) ⊂ Y , then we say that Y is G-invariant. If there is no non-empty proper
closed G-invariant subset of X, then we say that (X,G) is minimal.

The following three lemmas are well-known result for G-systems, we refer
the reader to Section 1.4 of [4].

Lemma 2.13. For every G-system (X,G), there exists a non-empty closed
G-invariant subset Y of X such that (Y,G) is minimal.

Lemma 2.14. Let (X,G) be a G-system. The following statements are equiv-
alent:

(1) (X,G) is minimal.
(2) For each x ∈ X, the set {gx : g ∈ G} is dense in X.
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(3) For every open subset U of X, there exist finitely many elements g1, . . .,
gn ∈ G such that

n⋃
i=1

g−1
i U = X.

Lemma 2.15. If a G-system (X,G) is minimal, then for every ε > 0 there
exists a finite subset G0 of G such that for any x, y ∈ X there exists g ∈ G0

with d(gx, y) < ε.

2.3. Directed partial semigroup and its action

Definition 2.16 ([1]). Let (Λ,≺) be a directed set. If an operator ∗ on Λ
satisfies the following conditions: for every λ1, λ2, λ3 ∈ Λ with λ1 ≺ λ2 ≺ λ3,
one has λ1 ≺ λ2 ∗ λ3, λ1 ∗ λ2 ≺ λ3 and (λ1 ∗ λ2) ∗ λ3 = λ1 ∗ (λ2 ∗ λ3), then we
say that (Λ,≺, ∗) is a directed partial semigroup.

Let B be a coideal basis on (Λ,≺). If for every B ∈ B and λ1, λ2 ∈ B with
λ1 ≺ λ2, λ1 ∗ λ2 ∈ B, then we called that B is suitable.

Example 2.17. Let n ∈ N. For x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈
Nn, if max1≤i≤n xi < min1≤i≤n yi, then we say that x ≺ y. We define an
operator + on Nn as x + y = (x1 + y1, x2 + y2, . . . , xn + yn). Then (Nn,≺,+)
is a directed partial semigroup. Let

B =
{
B = {b1,b2, . . . ,bk, . . . } ⊂ Nn : bk ≺ bk+1,∀k ∈ N

}
.

Then B is a coideal basis with the (D)-property for (Nn,≺,+), but it is not
suitable.

Example 2.18. Let F be the collection of all finite non-empty subsets of N.
For α, β ∈ F , if maxα < minβ, then we say that α ≺ β. Then (F ,≺,∪) is a
directed partial semigroup.

For a sequence {αn}∞n=1 in F , we set

FU({αn}∞n=1) =

{⋃
i∈β

αi : β ∈ F
}
.

By the well-known Hindman theorem (see [6]), it is not hard to see that the
collection

B = {FU({αn}∞n=1) : {αn}∞n=1 is a sequence in F and α1 ≺ α2 ≺ · · · }
is a suitable coideal basis with the (D)-property for (F ,≺,∪).

Definition 2.19. Let (Λ,≺, ∗) be a directed partial semigroup and (G, · ) be
a semigroup. If a Λ-sequence {xλ}λ∈Λ in G satisfies the following property: for
every λ1, λ2 ∈ Λ with λ1 ≺ λ2, xλ1∗λ2

= xλ1
· xλ2

, then we say that {xλ}λ∈Λ is
a Λ-system in G.

Definition 2.20. Let (Λ,≺, ∗) be a directed partial semigroup and X be a
compact metric space. If {Tλ}λ∈Λ be a Λ-system on End(X), then we say that
(X, {Tλ}λ∈Λ) is a Λ-topological dynamical system.
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Definition 2.21. Let (X, {Tλ}λ∈Λ) be a Λ-topological dynamical system and
x ∈ X.

(1) If there exists a sequence {λn}∞n=1 in Λ tending to infinity such that
limn→∞ Tλnx = x, then we say that x is recurrent.

(2) Let B be a coideal basis for (Λ,≺, ∗) and B ∈ B. If there exists A ∈ B
with A ⊂ B such that limλ∈A T

λx = x, then we say that x is B-
recurrent.

Theorem 2.22 ([1, Theorem 3.6]). If a directed partial semigroup (Λ,≺, ∗)
admits a suitable coideal basis B with the (D)-property, then for every Λ-
topological dynamical system (X, {Tλ}λ∈Λ) and B ∈ B, X contains some B-
recurrent point.

Remark 2.23. By Remark 2.10, if x is B-recurrent, then it is also recurrent. By
Theorem 2.22 if a directed partial semigroup (Λ,≺, ∗) admits a suitable coideal
basis B with the (D)-property, then every Λ-topological dynamical system con-
tains some recurrent point. But the following question is still open.

Question 2.24. Does every Λ-topological dynamical system (X, {Tλ}λ∈Λ) con-
tain some recurrent point?

Definition 2.25. Let (Λ,≺, ∗) be a directed partial semigroup and {λn}∞n=1

be a sequence in Λ. We define the finite product of {λn}∞n=1 as

FP ({λn}∞n=1) = {λi1 ∗ λi2 ∗ · · · ∗ λik : 1 ≤ i1 < i2 < · · · < ik, k ∈ N}.

Proposition 2.26. Let (X, {Tλ}λ∈Λ) be a Λ-topological dynamical system. If
a point x ∈ X is recurrent, then there exists a sequence {λn}∞n=1 in λ such
that for any open neighborhood U of x, there exists k ∈ N such that for any
λ ∈ FP ({λn}∞n=k), Tλx ∈ U .

Proof. As Λ is countable, enumerate it as {α1, α2, . . . , αn, αn+1, . . . }. Let d be
a compatible metric on X. Fix an open neighborhood V1 of x with diameter
less than 1. As x is recurrent, there exists λ1 ∈ Λ with α1 ≺ λ1 such that
Tλ1x ∈ V1. Then V1 ∩ (Tλ1)−1(V1) is also an open neighborhood of x. Pick an
open neighborhood V2 of x with diameter less than 1

2 and V2 ⊂ V1∩(Tλ1)−1(V1).

There exists λ2 ∈ Λ with α2 ≺ λ2 and λ1 ≺ λ2 such that Tλ2x ∈ V2. Then
Tλ1∗λ2x ∈ Tλ1V2 ⊂ V1. Assume that λ1, λ2, . . . , λn and V1, V2, . . . , Vn have
been found that

(1) λi ≺ λi+1 for i = 1, 2, . . . , n− 1;
(2) αi ≺ λi for i = 1, 2, . . . , n;
(3) Vi+1 ⊂ Vi ∩ (Tλi)−1Vi for i = 1, 2, . . . , n− 1;
(4) Vi is an open neighborhood of x with diameter less than 1

i for i =
1, 2, . . . , n.

Pick an open neighborhood Vn+1 of x with diameter less than 1
n+1 and Vn+1 ⊂

Vn ∩ (Tλn)−1(Vn). There exists λn+1 ∈ Λ with αn+1 ≺ λn+1 and λn ≺ λn+1

such that Tλn+1x ∈ Vn+1. By induction, we get a sequence {λn}∞n=1 in Λ and a
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sequence {Vn}∞n=1 of neighborhoods of x satisfying the previous properties. It
is clear that λn tends to infinity and the diameter of Vn tends to 0 as n→∞.
For every k ∈ N and any λ ∈ FP ({λn}∞n=k), Tλx ∈ Vk. Then the sequence
{λn}∞n=1 is as required. �

3. Proof of the main result

In this section, we give the proof of the main result in this article. Before
doing this, we need some preparation.

Definition 3.1. Let (X, {Tλ}λ∈Λ) be a Λ-topological dynamical system and
Y be a closed subset of X. If there exists a semigroup G of End(X) such that
for any g ∈ G and λ ∈ Λ, g ◦ Tλ = Tλ ◦ g, Y is G-invariant and (Y,G) is
minimal, then we say that Y is homogeneous in (X, {Tλ}λ∈Λ).

Lemma 3.2. Let (Λ,≺, ∗) be a directed partial semigroup and B is a coideal
basis for (Λ,≺, ∗). Assume that (X, {Tλ}λ∈Λ) is a Λ-topological dynamical
system, Y is a homogeneous subset of X and B ∈ B. Consider the following
statements.

(1) For every ε > 0 and λ0 ∈ Λ, there exist x, y ∈ Y and λ ∈ B with λ0 ≺ λ
and d(Tλy, x) < ε;

(2) For every ε > 0, x ∈ Y and λ0 ∈ Λ, there exist y ∈ Y and λ ∈ B with
λ0 ≺ λ such that d(Tλy, x) < ε;

(3) For every ε > 0 and λ0 ∈ Λ, there exist z ∈ Y and λ ∈ B with λ0 ≺ λ
such that d(Tλz, z) < ε.

Then, we have (1)⇒ (2)⇒ (3).

Proof. (1) ⇒ (2) Since Y is a homogeneous subset of X, there exists a semi-
group G of End(X) such that for any g ∈ G and λ ∈ Λ, g ◦ Tλ = Tλ ◦ g and
(Y,G) is minimal. Fix ε > 0, x ∈ Y and λ0 ∈ Λ. By Lemma 2.15 there exists
a finite subset G0 of G such that for every u, v ∈ Y

min
g∈G0

d(gu, v) <
ε

2
.

There exists δ > 0 such that if u, v ∈ X and d(u, v) < δ, then d(gu, gv) < ε
2 for

every g ∈ G0. According to the hypothesis, there exist x0, y0 ∈ Y and λ ∈ B
with λ0 ≺ λ and d(Tλy0, x0) < δ. Then for every g ∈ G0,

d(Tλ(gy0), gx0) = d(g(Tλy0), gx0) <
ε

2
.

Since there exists g ∈ G0 such that d(gx0, x) < ε
2 , we have that

d(Tλ(gy0), x) ≤ d(Tλ(gy0), gx0) + d(gx0, x) < ε,

which ends the proof.
(2) ⇒ (3) We fix ε > 0 and λ0 ∈ Λ. Let z0 ∈ Y . By our hypothesis, there

exists λ1 ∈ B with λ0 ≺ λ1 and z1 ∈ Y such that

d(Tλ1z1, z0) <
ε

2
.
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Let η2 = ε
2 − d(Tλ1z1, z0) > 0. Then there exists 0 < δ2 < ε

2 such that

d(Tλ1u, Tλ1v) < η2 for any u, v ∈ X with d(u, v) < δ2. Again by our hypothe-
sis, there exist z2 ∈ Y and λ2 ∈ B with λ1 ≺ λ2 such that

d(Tλ2z2, z1) < δ2 <
ε

2
.

It follows that

d(Tλ1∗λ2(z2), z0) ≤ d(Tλ1∗λ2(z2), Tλ1(z1)) + d(Tλ1z1, z0) <
ε

2
.

Assume that there exist z1, . . . , zk ∈ Y and λ1, . . . , λk ∈ B satisfying

d(Tλi+1∗···∗λjzj , zi) <
ε

2
for each 0 ≤ i < j ≤ k.

Let

ηk+1 = min
{ε

2
− d(Tλi+1∗···∗λjzj , zi) : 0 ≤ i < j ≤ k

}
> 0.

There exists 0 < δk+1 such that for every u, v ∈ X, if d(u, v) < δk+1, then

d(Tλu, Tλv) < ηk+1 for all λ = λi+1 ∗ · · · ∗ λj , 0 ≤ i < j ≤ k.

By our hypothesis, there exist zk+1 ∈ B and λnk+1
∈ B such that

d(Tλk+1zk+1, zk) < δk+1 <
ε

2
.

Then for every i = 1, 2, . . . , k,

d(Tλi+1∗···∗λk∗λk+1zk+1, zi) ≤ d(Tλi+1∗···∗λk∗λk+1zk+1, T
λi+1∗···∗λkzk)

+ d(Tλi+1∗···∗λkzk, zi)

< ηk+1 + d(Tλi+1∗···∗λkzk, zi) <
ε

2
.

Inductively, we can construct a sequence {zk}∞k=1 and {λk}∞k=1 such that for
each 0 ≤ i < j,

d(Tλi+1∗···∗λjzj , zi) <
ε

2
.

Since X is compact, there exists 0 ≤ i < j such that d(zi, zj) <
ε
2 . Let z = zj

and λ = λi+1 ∗ · · · ∗ λj . Since B is suitable, λ ∈ B. Then we obtain that

d(Tλz, z) ≤ d(Tλi+1∗···∗λjzj , zi) + d(zi, zj) < ε.

This ends the proof. �

Remark 3.3. In proving (2)⇒ (3), we only use the assumption that Y is closed
rather than Y is homogeneous.

Proposition 3.4. Let (Λ,≺, ∗) be a directed partial semigroup and B is a
coideal basis for (Λ,≺, ∗). Let X be a compact metric space and G is an
abelian subgroup of Aut(X) such that (X,G) is minimal. Assume that ` ≥ 1
and {Tλi }λ∈Λ are Λ-systems on G for i = 1, . . . , `. Then the following four
statements are equivalent:
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(1) For every non-empty open subset U of X, B ∈ B and λ0 ∈ B there exists
λ ∈ B with λ0 ≺ λ such that

U ∩
⋂̀
i=1

(Tλi )−1U 6= ∅.

(2) For every ε > 0, for every B ∈ B and λ0 ∈ Λ there exist x ∈ X and
λ ∈ B with λ0 ≺ λ such that d(Tλi x, x) < ε for i = 1, 2, . . . , `.

(3) For every B ∈ B there exists a sequence {λn}∞n=1 in B tending to infinity
and x ∈ X such that

lim
n→∞

Tλn
i x = x, i = 1, . . . , `.

(4) For every B ∈ B there exists a dense Gδ subset A of X such that for any
x ∈ A there exists a sequence {λn}∞n=1 in B tending to infinity satisfying

lim
n→∞

Tλn
i x = x, i = 1, . . . , `.

Proof. (2) ⇒ (1). Let U be non-empty open subset of X, B ∈ B and λ0 ∈ B.
Since (X,G) is minimal, there exists a finite subset G0 of G such that X =⋃
g∈G0

g−1U . Let ε be a Lebesgue number of the open cover {g−1U : g ∈ G0}.
There exist x ∈ X and λ ∈ B with λ0 ≺ λ such that d(Tλi x, x) < ε for
i = 1, 2, . . . , `. Choose g ∈ G0 such that x, Tλi x ∈ g−1U for every 1 ≤ i ≤ `.
Hence

gx ∈ U ∩
⋂̀
i=1

(Tλi )−1(U).

(3) ⇒ (2) and (4) ⇒ (3) are obvious.
(1) ⇒ (4). Fix B ∈ B. For every m ∈ N and λ ∈ B, we set

A(m,λ) =
{
x ∈ X : d(x, Tλi x) <

1

m
, i = 1, 2, . . . , `

}
.

It is clear that A(m,λ) is an open subset of X. We first show the following
claim.

Claim: For every λ0 ∈ B, the set
⋃
λ∈B,λ0≺λA(m,λ) is dense in X.

Indeed, let U be a non-empty open subset of X. Choose a non-empty open
subset V of U such that the diameter of V is less than 1

m . There exists λ1 ∈ B
with λ0 ≺ λ1 such that

V ∩
⋂̀
i=1

(Tλi )−1V 6= ∅.

Pick a point x ∈ V ∩
⋂`
i=1(Tλ1

i )−1V . Then x, Tλ1
i x ∈ V for i = 1, 2, . . . , `.

As the diameter of V is less than 1
m , d(x, Tλ1

i x) < 1
m for i = 1, 2, . . . , `. Then

x ∈ U ∩A(m,λ)1.
To finish the proof of the statement, let

A = ∩∞m=1 ∩λ0∈B ∪λ∈B,λ0≺λA(m,λ).
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As B is countable, by the Baire’s theorem, A is dense Gδ subset of X. It is
easy to see that z ∈ X if and only if there exists a sequence {λn}∞n=1 in B
tending to infinity such that

lim
n→∞

Tλn
i z = z for i = 1, . . . , `,

which completes the proof of the claim. �

Remark 3.5. The “countability” assumption is needed in the proof of Proposi-
tion 3.4 (1)⇒ (4) in order to use Baire’s theorem.

Now we give the proof of the main result.

Proof of Theorem 1.3. Without loss of generality, we assume that (X,G) is
minimal, otherwise we can replace X by a G-minimal subset of X. We proceed
by induction on `. For ` = 1 the theorem is valid by Theorem 2.22 and
Remark 2.23. Assume that the theorem holds for ` − 1. Let B ∈ B and
{Tλ1 }λ∈Λ, . . . , {Tλ` }λ ∈ Λ be ` Λ-topological dynamical systems satisfying the
hypothesis of the theorem. Set

∆` = {(x, x, . . . , x) ∈ X` : x ∈ X},

T̂λ = Tλ1 × · · · × Tλ` ,
g(x1, . . . , x`) = (gx1, . . . , gx`).

If we set π : ∆` → X, (x, x, . . . , x) 7→ x, then π is a topological conjugacy
between (∆`, G) and (X,G). It follows that (∆`, G) is also a minimal system.

Then ∆` is homogeneous in (X`, {T̂λ}λ∈Λ). We first show the following claim.

Claim: For every ε > 0 and λ0 ∈ Λ, there exist x∗, y∗ ∈ ∆` and λ ∈ B with
λ0 ≺ λ such that

d(Tλy∗, x∗) < ε.

Indeed, for 1 ≤ i ≤ `− 1, set

Rλi = Tλi ◦ (Tλ` )−1.

Applying the induction hypothesis, we have the existence of x ∈ X and a
sequence {λn}∞n=1 in B tending to infinity such that

lim
n→∞

Rλn
i x = x for i = 1, . . . , `− 1.

Let

x∗ = (x, x, . . . , x) and y∗ = ((Tλn

` )−1x, (Tλn

` )−1x, . . . , (Tλn

` )−1x).

Then we have that

d(T̂λny∗, x∗) = d(Tλn
1 × Tλn

2 × · · · × Tλn

` y∗, x∗)

= d((Tλn
1 ◦ (Tλn

` )−1x, . . . , Tλn

` ◦ (Tλn

` )−1x, x), (x, x, . . . , x))

= d((Rλn
1 x, . . . , Rλn

`−1x, x), (x, x, · · · , x)).
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For every ε > 0 and λ0 ∈ Λ, we can select an large enough n such that λn ∈ B
with λn � λ0 and satisfying

d(T̂λny∗, x∗) < ε.

To end the proof, by Lemma 3.2, with the above claim we deduced that for
every ε > 0 and λ0 ∈ Λ there exist x ∈ X and λ ∈ B with λ0 ≺ λ such
that d(Tλi x, x) < ε for i = 1, 2, . . . , `. Then the result follows from Proposi-
tion 3.4(2)⇒ (3). �

Remark 3.6. According to Example 2.18 and Proposition 2.26, our Theorem 1.3
is a generalization of Furstenberg-Weiss’s multiple recurrence theorem (Theo-
rem 1.1).

Remark 3.7. A semigroup with a digital representation was studied in [3]. The
authors in [1] showed that a semigroup with digital representation in a proper
relation has s suitable coideal basis satisfying the (D)-property. Theorem 1.3
can be applied to this setting too.

Remark 3.8. In the proof of Theorem 1.3, we only require the (D)-property of
the suitable coideal basis B in Theorem 2.22. If Question 2.24 has a positive
answer or holds under some weak conditions, then Theorem 1.3 also holds under
those conditions.
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