• 제목/요약/키워드: dynamical systems

검색결과 444건 처리시간 0.025초

The Observing System Research and Predictability Experiment (THORPEX) and Potential Benefits for Korea and the East Asia

  • Park, Seon Ki
    • 대기
    • /
    • 제14권3호
    • /
    • pp.41-54
    • /
    • 2004
  • In this study, a brief overview on a WMO/WWRP program - The Observing System Research and Predictability Experiment (THORPEX) and discussions on perspectives and potential benefits of Asian countries are provided. THORPEX is aimed at accelerating improvements in the accuracy of 1 to 14-day high-impact weather forecasts with research objectives of: 1) predictability and dynamical processes; 2) observing systems; 3) data assimilation and observing strategies; and 4) societal and economic applications. Direct benefits of Asian countries from THORPEX include improvement of: 1) forecast skills in global models, which exerts positive impact on mesoscale forecasts; 2) typhoon forecasts through dropwindsonde observations; and 3) forecast skills for high-impact weather systems via increased observations in neighboring countries. Various indirect benefits for scientific researches are also discussed. Extensive adaptive observation studies are recommended for all high-impact weather systems coming into the Korean peninsula, and enhancement of observations in the highly sensitive regions for the forecast error growth is required to improve forecast skills in the peninsula, possibly through international collaborations with neighboring countries.

Identification and Control of Nonlinear Systems Using Haar Wavelet Networks

  • Sokho Chang;Lee, Seok-Won;Nam, Boo-Hee
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.169-174
    • /
    • 2000
  • In this paper, Haar wavelet-based neural network is described for the identification and control of discrete-time nonlinear dynamical systems. Wavelets are suited to depict functions with local nonlinearities and fast variations because of their intrinsic properties of finite support and self-similarity. Due to the orthonormal properties of Haar wavelet functions, wavelet neural networks result in a greatly simplified training problem. This wavelet-based scheme performs adaptively both the identification of nonlinear functions and the control of the overall system, while the multilayer neural network is applied to the control system just after its sufficient learning of the unknown functions. Simulation shows that the wavelet network can be a good alternative to a multilayer neural network with backpropagation.

  • PDF

A Note on State Estimation Problems for Perspective Linear Systems Corrupted by Noises

  • Kondo, Ryota;Abdursul, Rixat;Inaba, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.480-485
    • /
    • 2005
  • Perspective dynamical systems arise in machine vision problems, in which only perspective observation is available. This paper considers the state estimation problem for a rigid body moving in three dimensional spaces using the image data obtained by a CCD camera or some other means. Because the motion of the rigid body and the observed data are generally corrupted by noises, it is necessary to seek a state estimation method to reduce the influence of the noises. In this paper, by means of computer simulations for a simple example, we examine the sensitivity to the noises of the nonlinear observer developed in the recent paper ([1] R. Abdursul, H. Inaba and B. Ghosh, Nonlinear observers for perspective time-invariant linear systems, Automatica, vol. 40, Issue 3, pp. 481-490, 2004) and the effectiveness of the Extended Kalman Filter.

  • PDF

신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델에 관한 연구 (A Study on the State Space Identification Model of the Dynamic System using Neural Networks)

  • 이재현;강성인;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.115-120
    • /
    • 1997
  • System identification is the task of inferring a mathematical description of a dynamic system from a series of measurements of the system. There are several motives for establishing mathematical descriptions of dynamic systems. Typical applications encompass simulation, prediction, fault diagnostics, and control system design. The paper demonstrates that neural networks can be used effective for the identification of nonlinear dynamical systems. The content of this paper concerns dynamic neural network models, where not all inputs to and outputs from the networks are measurable. Only one model type is treated, the well-known Innovation State Space model(Kalman Predictor). The identification is based only on input/output measurements, so in fact a non-linear Extended Kalman Filter problem is solved. Even for linear models this is a non-linear problem without any assurance of convergence, and in spite of this fact an attempt is made to apply the principles from linear models, an extend them to non-linear models. Computer simulation results reveal that the identification scheme suggested are practically feasible.

  • PDF

On Choice of Kautz functions Pole and its Relation with Accuracy in System Identification

  • Bae, Chul-Min;Wada, Kiyoshi;Imai, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.125-128
    • /
    • 1999
  • A linear time-invariant model can be described either by a parametric model or by a nonparametric model. Nonparametric models, for which a priori information is not necessary, are basically the response of the dynamic system such as impulse response model and frequency models. Parametric models, such as transfer function models, can be easily described by a small number of parameters. In this paper aiming to take benefit from both types of models, we will use linear-combination of basis fuctions in an impulse response using a few parameters. We will expand and generalize the Kautz functions as basis functions for dynamical system representations and we will consider estimation problem of transfer functions using Kautz function. And so we will present the influences of poles settings of Kautz function on the identification accuracy.

  • PDF

CHAOTIC BEHAVIOUR OF CHAIN COMPONENTS IN BISHADOWING SYSTEMS

  • Park, Tae-Young;Lee, Keon-Hee
    • 대한수학회지
    • /
    • 제38권3호
    • /
    • pp.613-621
    • /
    • 2001
  • In this paper we show that if a dynamical system $\phi$ has bishadowing and cyclically bishadowing properties on the chain recurrent set CR($\phi$) then all nearby continuous perturbations of $\phi$ behave chaotically on a neighborhood of each chain component of $\phi$ wheneer it has a fixed point. This is a generalization of the results obtained by Diamond et al.([3]).

  • PDF

A GENERALIZATION OF THE KINETIC EQUATION USING THE PRABHAKAR-TYPE OPERATORS

  • Dorrego, Gustavo Abel;Kumar, Dinesh
    • 호남수학학술지
    • /
    • 제39권3호
    • /
    • pp.401-416
    • /
    • 2017
  • Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have provided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at presenting solutions of certain general families of fractional kinetic equations using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. [21].

Potts Automata를 이용한 영상의 잡음 제거 (A Potts Automata algorithm for Reducing Image Noise)

  • 정현진;김석태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.81-84
    • /
    • 2000
  • Cellular automata are discrete dynamical systems whose behaviour is completely specified in terms of a local relation. If cellular automata convergence to fixed points, then it can be used to image processing. From the generalized Potts automata point of view, we propose in this paper a cellular automata technique for reducing image noise. To minimize blurring effect, an algorithm based on neighborhood median computation is Preferred. Experimental results are reported.

  • PDF

동적 제약 조건하에서 두 대 로봇이 공동으로 잡고 나르는 물체의 최대 가속도 범위 해석 (Acceleration Bounds of Cooperating Two Robots under Dynamical Constraint)

  • 이지홍;심형원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2709-2712
    • /
    • 2003
  • In this paper, dynamic constraints are considered for the analysis of manipulability of robotics systems comprised of two cooperating arms. Given bounds on the torques of joint actuators for each robot, the purpose of this study is to derive the bounds of task acceleration of object carried by the system. Under the assumption of complete constraint contact, a set of examplar polytope describing acceleration bounds of two cooperating robots are included.

  • PDF