• Title/Summary/Keyword: dynamic viscoelasticity

Search Result 74, Processing Time 0.025 seconds

Transient Linear Viscoelastic Stress Analysis Based on the Equations of Motion in Time Integral (시간적분형 운동방정식에 근거한 동점탄성 문제의 응력해석)

  • Lee, Sung-Hee;Sim, Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1579-1588
    • /
    • 2003
  • In this paper, the finite element equations for the transient linear viscoelastic stress analysis are presented in time domain, whose variational formulation is derived by using the Galerkin's method based on the equations of motion in time integral. Since the inertia terms are not included in the variational formulation, the time integration schemes such as the Newmark's method widely used in the classical dynamic analysis based on the equations of motion in time differential are not required in the development of that formulation, resulting in a computationally simple and stable numerical algorithm. The viscoelastic material is assumed to behave as a standard linear solid in shear and an elastic solid in dilatation. To show the validity of the presented method, two numerical examples are solved nuder plane strain and plane stress conditions and good results are obtained.

Dynamic load concentration caused by a break in a Lamina with viscoelastic matrix

  • Reza, Arash;Sedighi, Hamid M.;Soleimani, Mahdi
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1465-1478
    • /
    • 2015
  • The effect of cutting off fibers on transient load in a polymeric matrix composite lamina was studied in this paper. The behavior of fibers was considered to be linear elastic and the matrix behavior was considered to be linear viscoelastic. To model the viscoelastic behavior of matrix, a three parameter solid model was employed. To conduct this research, finite difference method was used. The governing equations were obtained using Shear-lag theory and were solved using boundary and initial conditions before and after the development of break. Using finite difference method, the governing integro-differential equations were developed and normal stress in the fibers is obtained. Particular attention is paid the dynamic overshoot resulting when the fibers are suddenly broken. Results show that considering viscoelastic properties of matrix causes a decrease in dynamic load concentration factor and an increase in static load concentration factor. Also with increases the number of broken fibers, trend of increasing load concentration factor decreases gradually. Furthermore, the overshoot of load in fibers adjacent to the break in a polymeric matrix with high transient time is lower than a matrix with lower transient time, but the load concentration factor in the matrix with high transient time is lower.

Rheological Properties of Waxy Rice Starch-Gum Mixtures in Steady and Dynamic Shear

  • Kim, Do-Dan;Lee, Young-Seung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.3
    • /
    • pp.233-239
    • /
    • 2009
  • The effects of guar gum (GG) and xanthan gum (XG) at different concentrations (0, 0.2, 0.4, and 0.6% w/w) on the rheological properties of Korean waxy rice starch (WRS) pastes were evaluated under both steady and dynamic shear conditions. The flow properties of WRS-gum mixtures were determined from the rheological parameters of the power law model. The addition of GG and XG to WRS resulted in an increase in the apparent viscosity ($\eta_{a,100}$) and consistency index (K) values obtained from power law model. The flow behavior index (n) values of the WRS-XG mixtures decreased with an increase in gum concentration while there was only a marginal difference between n values for the WRS-GG mixtures. Dynamic moduli (G', G", and $\eta^*$) values in the WRS-gum mixture systems also increased with an increase in gum concentration. WRS-XG mixtures had higher dynamic moduli and lower tan $\delta$ (ratio of G"/G') values than WRS-GG mixtures, indicating that the higher dynamic rheological properties of WRS-XG can be attributed to an increase in the viscoelasticity of the continuous phase in the starch-gum mixture systems, which was due to the higher viscoleastic properties of XG compared to GG. The dynamic ($\eta^*$) and steady shear ($\eta_a$) viscosities of the WRS-XG paste at a 0.2% gum concentration followed the Cox-Merz superposition rule.

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

Sliding Friction of Elastomer Composites in Contact with Rough Self-affine Surfaces: Theory and Application (자기-아핀 표면 특성을 고려한 유기탄성체 복합재료 마찰 이론 및 타이어 트레드/노면 마찰 응용)

  • Bumyong Yoon;Yoon Jin Chang;Baekhwan Kim;Jonghwan Suhr
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • This review paper presents an introduction of contact mechanics and rubber friction theory for sliding friction of elastomer composites in contact with rough surfaces. Particularly, Klüppel & Heinrich theory considers the self-affine (or fractal) characteristic for rough surfaces to predict adhesion and hysteresis frictions of elastomers based on the contact mechanics of Greenwood & Williamson. Due to dynamic excitation process of elastomer composites while sliding in contact with multiscale surface roughness (or asperity), viscoelastic properties in a wide frequency range becomes major contributor to friction behaviors. A brief description and examples are provided to construct a viscoelastic master curve considering nonlinear viscoelasticity of elastomer composites. Finally, application of rubber friction theory to tire tread compounds in traction with road surfaces is discussed with several experimental and theoretical results.

Physicochemical and Rheological Evaluation of Rice-Whole Soybean Curds Prepared by Microbial Transglutaminase (미생물 Transglutaminase를 이용하여 제조된 쌀 혼합 전두부의 이화학적 및 물성 평가)

  • Jin, Ik-Hun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.738-746
    • /
    • 2011
  • We manufactured rice-whole soybean curd by a microbial transglutaminase (MTGase) with a mixture of hydrolyzed rice and micronized whole soybean powder (MWSP) and analyzed its rheological properties, including texture, viscoelasticity, protein cross-linking, and surface structure. A 40% rice suspension digested with a Termamyl enzyme at $85^{\circ}C$ for 20 min showed a 9.0% reducing sugar and a consistency of $1.27\;Pa{\cdot}s^n$, resulting in a great reduction in consistency. A MWSP suspension with 22% solid content was transformed into a typical tofu texture. MWSP curd fortified with 7.5% rice showed enhanced texture properties, with a hardness of 639.6 dyne/$cm^2$, and a springiness of 0.96. In a MWSP suspension (18~22% w/v) treated with 5% MTGase, viscoelasticity increased dependently with MWSP concentration, and a 22% MWSP indicated a G' value of 5.1 Pa and a G'' value of 9.0 Pa. Furthermore, soybean proteins present in the 22% MWSP curd largely disappeared or formed polymers with a high molecular weight by MTGase reaction within 30 min. MWSP (22%) fortified with 7.5% rice showed similar polymerization patterns on SDS-PAGE. The surface structure of the rice-MWSP curds was more dense and homogeneous network due to the addition of hydrolyzed rice. However, the surface structure of all rice-MWSP curds became rough and showed a non-homogeneous network after cold storage.

Studies on the Comparison of Physicochemical Properties and the Presumption of Sensory Quality of Japonica Rice Varieties Cultivated in Korea and Japan (한국과 일본의 자포니카종 쌀에 대한 이화학적 특성의 비교 및 관능품질의 추정에 관한 연구)

  • 홍원표;이성갑;박승남
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.6
    • /
    • pp.596-604
    • /
    • 2001
  • Twelve varieties of Korean rice and ten varieties of Japanese rice were selected. After being milled. they were analyzed about various physicochemical properties such as moisture, protein and amylose, a -amylase activity, gelatinization properties. And after being cooked with proper amount of water texture and other physical properties were measured by Texturometer, Tensipresser and Rheolograph-micro. Finally the sensory evaluation test was carried out. The results were as follows. 1. In case of protein contents, amylose contents and $\alpha$-amylase activity, Korean rice had a slightly higher value than Japanese As a consequence. Korean rice showed a little stronger hardness and a little weaker stickiness compared with Japanese rice. 2. Amylose contents showed very high correlation with other physicochemical properties and peak viscosity and gelatinization temperature of RVA, the ratio of stickiness to hardness( -Hl/Hl ) of Texturometer and the tan $\delta$(the ratio of dynamic loss to dynamic viscoelasticity) of Rheolograph-micro showed high correlation with other analyzed properties. 3. The ( -/+)work balance of low compression test(25% ) of Tensipresser analysis(texture analysis on the surface of cooked rice) and tan f of Rheolograph-micro showed very high correlation with sensory evaluation results. By using this parameters as major independent variables, some trials to derive high confidence multiple regression equations were accomplished. By the equations it would be possible to make an approximate pre-estimate of eating quality for unknown japonica rice.

  • PDF

Influence of Process Oil Content on Properties of Silica-SBR Rubber Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.184-190
    • /
    • 2020
  • In the wet master batch process, process oil is used to improve the workability of silica-SBR. The process oil expands the polymer and provides lubrication to soften the stiff rubber chain. However, addition of excess process oil can interfere in the crosslinking reaction between rubber molecules and reduce the crosslinking density of silica-SBR. Controlling the amount of process oil is an important aspect for properly controlling the workability and crosslinking density of silica-SBR. In this study, silica-SBR was prepared by adjusting the amount of process oil to confirm its effect on silicaSBR. Vulcanization characteristics of silica-SBR were examined using a moving die rheometer. Dynamic viscoelasticity was measured using a dynamic mechanical thermal analyzer, and the mechanical properties were investigated using the universal testing machine according to ASTM D412. As a result, all silica-SBR compounds with 10 to 40 phr of process oil have effects of improving the processability and the silica dispersibility. Also, the optimum condition was determined when 10 phr of processed oil was added because the abrasion resistance was improved 65% compared to that at 40 phr.

Oscillatory behavior of microglial cells (미세아교세포의 진동 거동의 연구)

  • Park, Eunyoung;Cho, Youngbin;Ko, Ung Hyun;Park, Jin-Sung;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2021
  • Cells regulate their shapes and motility by sensing the cues from the internal and external microenvironment. Under different circumstances, microglia, the brain resident immune cells, undergo dynamic phenotypic changes, one of which is a remarkable periodic oscillatory migration in vitro. However, very little is known about the kinematic and dynamic perspectives of this oscillatory behavior. In this study, we tracked the changes in cell morphology and nuclear displacement, and visualized the forces using traction force microscopy (TFM). By correlation analyses, we confirmed that the lamellipodia formation preceded the nuclear translocation. Moreover, traction, developed following lamellipodia formation, was found to be localized and fluctuated at two ends of the oscillating cells. Taken together, our results imply that oscillatory microglial cells feature a viscoelastic migration, which will contribute to the field of cell mechanics.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.