• 제목/요약/키워드: dynamic vibration system

검색결과 2,015건 처리시간 0.025초

Analysis of a Building Structure with Added Viscoelastic Dampers

  • Lee, Dong-Guen;Hong, Sung-Il;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제2권3호
    • /
    • pp.27-35
    • /
    • 1998
  • Steel structures with added viscoelastic dampers are analysed to investigat their behavior under earthquake excitation. The direct integration method, which produces exact solution for the non-proportional or non-classical damping system, is used throughout the analysis. The results from modal strain energy method are also provided for comparison. Then a new analytical a, pp.oach, based on the rigid floor diaphragm assumption and matrix condensation technique, is introduced, and the results are compared with those obtained from direct integration method and modal strain energy method. The well known phenomenon, that the effectiveness of the viscoelastic dampers depends greatly on the location of the dampers, is once again confirmed in the analysis. It is also found that the modal strain energy method generaly underestimates the responses obtained from the direct integration method, especially when the dampers are placed in only a part of the building. The proposed method turns out to be very efficient with considerable saving in computation this and reasonably accurate considering the reduced degrees of freedom.

  • PDF

Accumulation of wind induced damage on bilinear SDOF systems

  • Hong, H.P.
    • Wind and Structures
    • /
    • 제7권3호
    • /
    • pp.145-158
    • /
    • 2004
  • The evaluation of the accumulation of permanent set for inelastic structures due to wind action is important in establishing a criterion to select a reduced design wind load and in incorporating the beneficial ductile behaviour in wind engineering. A parametric study of the accumulation of the permanent set as well as the ductility demand for bilinear single-degree-of-freedom (SDOF) systems is presented in the present study. The dynamic analysis of the inelastic SDOF system is carried out using the method of Newmark for artificially generated time history of wind speed. Simulation results indicate that the mean of the normalized damage rate is highly dependent on the natural frequency of vibration. This mean value is relatively insensitive to the damping ratio if the damping ratio is larger than 5%. The scatter associated with the accumulation of the permanent set is very significant. The consideration of the postyield stiffness can significantly reduce the accumulation of the permanent set if the ratio of the yield strength to the expected peak response is small. The results also show that the ductility demand due to the wind action over a period of one hour for flexible structures can be much less than that for rigid structures or structures with larger damping ratio if the SDOF systems are designed with a reduced peak response caused by the fluctuating wind.

Long-Term Monitoring and Analysis of a Curved Concrete Box-Girder Bridge

  • Lee, Sung-Chil;Feng, Maria Q.;Hong, Seok-Hee;Chung, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.91-98
    • /
    • 2008
  • Curved bridges are important components of a highway transportation network for connecting local roads and highways, but very few data have been collected in terms of their field performance. This paper presents two-years monitoring and system identification results of a curved concrete box-girder bridge, the West St. On-Ramp, under ambient traffic excitations. The authors permanently installed accelerometers on the bridge from the beginning of the bridge life. From the ambient vibration data sets collected over the two years, the element stiffness correction factors for the columns, the girder, and boundary springs were identified using the back-propagation neural network. The results showed that the element stiffness values were nearly 10% different from the initial design values. It was also observed that the traffic conditions heavily influence the dynamic characteristics of this curved bridge. Furthermore, a probability distribution model of the element stiffness was established for long-term monitoring and analysis of the bridge stiffness change.

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • 제14권3호
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF

A Study on The Identification of Characteristics For The 2 Dimensional Continuous Vibration System By Mass Sensitivity Analysis (질량감도 해석에 의한 2차원 연속계의 진동특성에 관한 연구)

  • Lee, Jung-Yoon;Park, Ho;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제14권2호
    • /
    • pp.339-348
    • /
    • 1990
  • Techniques which are able to predict and control dynamic characteristics, not affecting the vibrational characteristics on the modification of structural design, are being studied. As one of these techniques, experimental modal analysis is widely applied by many researchers. In this study, modal analysis is performed using transfer matrix method by a macro computer. The developed program would estimate the structural modal parameters precisely, and the validity of this program is certified by comparing with the experimental results of .GAMMA A. structure. Estimated modal parameters(natural frequency, vibrational mode, equivalent mass, etc.) are in accord with the experimental results. Also, the optimal location of the additive mass is determined by the evaluation of the vibrational mode and the equivalent mass. The relation between the additive mass and the equivalent mass is specified, and we come to know that the ratio of equivalent mass to additive mass alter linearly within the range of 20%.

Dynamic Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses (기계식 一葉심장밸브의 동적거동 해석)

  • 천길정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제16권11호
    • /
    • pp.2090-2097
    • /
    • 1992
  • In this paper, fluttering behavior of mechanical monloleaflet heart valve prosthesis was analyzed taking into consideration of the impact between the valve occluder and the stopper. The motion of valve occluder was modeled as a rotating system, and equations were derived by employing the moment equilibrium conditions. Lift force, drag force, gravity and buoyancy were considered as external forces acting on the valve occluder. The 4th order Runge-Kutta method was used to solve the equations. The results demonstrated that the occluder reaches steady eguilibrium position only after damped vibration. The mean damping ratio is in the range of 0.197-0.301. Fluttering frequency does not have any specific value, but varies as a function of time. It is in the range of 11-84Hz. Valve opening appears to be affected by the orientation of the valve relative to gravitational forces.

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • 제4권1호
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

A Study on the Modeling and Diagnostics on Chatter in Endmilling Operation (엔드밀 가공시 채터 모델링과 진단에 관한 연구)

  • Kim, Young-Kook;Yoon, Moon-Chul;Ha, Man-Kyeong;Sim, Seong-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제18권10호
    • /
    • pp.101-108
    • /
    • 2001
  • In this study, the static and dynamic characteristics of endmilling process were modelled and the analytic realization of chatter mechanism was discussed. In this reward, We have discussed on the comparative assessment of recursive time series modeling algorithms that cal represent time machining process and detect the abnormal machining behaviors in precision endmilling operation. In this study, simulation and experimental works were performed to show the malfunctional behaviors. For this purpose, new recursive algorithm(RLSM) was adopted for the oil-line system identification and monitoring of a machining process, we can apply these new algorithms in real process for detection of abnormal chatter. Also, The stability lobe of chatter was analysed by varying parameter of cutting dynamics in regenerative chatter mechanics.

  • PDF

Rotordynamic Performance Measurements of An Oil-Free Turbocharger Supported on Gas Foil Bearings and Their Comparisons to Floating Ring Bearings

  • Lee, Yong-Bok;Park, Dong-Jin;Sim, Kyuho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.23-35
    • /
    • 2015
  • This paper presents the rotordynamic performance measurement of oil-free turbocharger (TC) supported on gas foil bearings (GFBs) for 2 liter class diesel vehicles and comparison to floating ring bearings (FRBs). Oil-free TC was designed and developed via the rotordynamic analyses using dynamic force coefficients from GFB analyses. The rotordynamics and performance of the oil-free TC was measured up to 85 krpm while being driven by a diesel vehicle engine, and compared to a commercial oil-lubricated TC supported on FRBs. The test results showed that the GFBs increased the rotor speed by ~ 20% at engine speeds of 1,500 rpm and 1,750 rpm, yielding the reduction of turbine input energy by more than 400 W. Incidentally, an external shock test on the oil-free TC casing was conducted at the rotor speed of 60 krpm, and showed a good capability of vibration damping due to the well-known dry friction mechanism of the GFBs.