• Title/Summary/Keyword: dynamic time-history analysis

Search Result 514, Processing Time 0.026 seconds

Seismic Performance Assessment of Atmospheric Surge Tank (노출형 조압수조의 해석모델별 내진성능평가)

  • Kim, Yongon;Ok, Seung-Yong;Kim, Il Gyu;Ryu, Seonho;Bae, Jungjoo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • This study investigates the seismic performance of the surge tank which is of the atmospheric type and constructed above the ground. For that purpose, three different numerical models of the surge tank have been taken into account. Two models are constructed to describe the surge tank with different support conditions: one is to model all supports as fixed, and the other is to use spring element for the rock conditions. The third model is constructed to describe not only the surge tank with spring element of the rocks but also the vertical waterway tunnel. Through the time-history analysis of the surge tank subjected to three artificially excited ground motions, it is demonstrated that there can be much difference between the three models of our interest according to the support conditions and inclusion of the vertical waterway tunnel. However, their seismic performances still remain below the safety criteria, i.e., dynamic allowable stress. Also, the numerical results let us know where the critical sections occur. These results could be used to develop the efficient seismic enhancement method for the surge tank.

Ultrasonographic Guidance in Acute Achilles Tendon Rupture (급성 아킬레스 건 파열에서의 초음파 이용)

  • Lee, Tae-Hoon;Lee, Hee-Dong;Kim, Hak-Jun
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.8 no.1
    • /
    • pp.26-30
    • /
    • 2015
  • There are many traumatic foot and ankle problems in orthopaedic fields. Though it is not life-threatening problems, a delay in accurate diagnosis and treatments can danger limb function and therefore correct diagnosis can prevent long-term complications. Achilles tendon rupture is relatively common injury for active sports people. Ultrasonography is cost-effective, irradiation -free, effective for evaluation of soft tissues and dynamic analysis. It has been growing importance in Achilles tendon rupture. Ultrasonography is a diagnostic tool in Achilles tendon rupture. Physical examination and patient history is needed to diagnose Achilles tendon without image, but it is missed up by 20% in private clinic. Discontinuity of normal fibrillar architecture seen on an ultrasonographic image is diagnostic for Achilles tendon rupture, and can be accentuated by the performance of dorsi-flexion and plantar flexion, while observing in real time. And ultrasonography is a reliable method for serial observation after surgical treatment or conservative treatment.

  • PDF

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Social Relation of Cyber Sports Supporter's Community and Social Capital (사이버 스포츠서포터스 공동체의 사회적 관계와 사회적 자본)

  • Kim, Kyong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.386-395
    • /
    • 2013
  • This study examined social relation of cyber sports supporter's community and social capital as time passes. This study selected spectator sports supporters of cyber sports community based on number of number and history of cyber sports supporter. This community is a representative supporter's club of spectator sports. This study utilized 1,848 members accumulated during three month. To analyze data, Netminer 4.0 and social network analysis were used. The conclusion is following: First, social relation of cyber sports supporter's community showed up dynamic change. Second, social capital of cyber sports supporter's community shows Sports events and training schedules, player transfer, manager, record, game watching and TV watching, cheering, cheering uniform and tools, players, teams and clubs, game photos and video, etc. This is the poor-get-poorer and the rich-get-richer phenomenon.

Visual expression technique analysis of motion graphic by media for emotion communication (감성전달을 위한 매체별 모션그래픽의 시각적 표현기법 분석)

  • Yun, Hwang-Rok;Kyung, Byung-Pyo;Lee, Dong-Lyeor
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.921-926
    • /
    • 2009
  • After the scientific development of human history, numerous images have been developed and expanded in digital media as a communication tools. Image digital media make communication closer between sender and receptor. The image digital media which has been developed with the change of technology and media transformation have shortened visual information transportation and the time as well by combining the sense of visual and audio. Motion graphic field has been emerged as the type of image digital media development. The development of motion graphic make possible for the expressive effect and dynamic image technique which is impossible by the existing media type. Especially, it is applied to various field such as the title of movie, TV program, and advertise or music video etc. These image expression techniques are stimulating acceptor's emotion to take a role of emotion communication function also. This study aims to find the characteristics motion graphic of which how influence as an effective communication tool as important role to the receptors, and the examine the effect and application of motion graphic to the receptors as a emotion communication tool by case study.

  • PDF

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events

  • Fakharifar, Mostafa;Chen, Genda;Dalvand, Ahmad;Shamsabadi, Anoosh
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.345-367
    • /
    • 2015
  • Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).

Seismic response of 3D steel buildings with hybrid connections: PRC and FRC

  • Reyes-Salazar, Alfredo;Cervantes-Lugo, Jesus Alberto;Barraza, Arturo Lopez;Bojorquez, Eden;Bojorquez, Juan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.113-139
    • /
    • 2016
  • The nonlinear seismic responses of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are estimated, modeling the interior connections first as perfectly pinned (PPC), and then as partially restrained (PRC). Two 3D steel building models, twenty strong motions and three levels of the PRC rigidity, which are represented by the Richard Model and the Beam Line Theory, are considered. The RUAUMOKO Computer Program is used for the required time history nonlinear dynamic analysis. The responses can be significantly reduced when interior connections are considered as PRC, confirming what observed in experimental investigations. The reduction significantly varies with the strong motion, story, model, structural deformation, response parameter, and location of the structural element. The reduction is larger for global than for local response parameters; average reductions larger than 30% are observed for shears and displacements while they are about 20% for bending moments. The reduction is much larger for medium- than for low-rise buildings indicating a considerable influence of the structural complexity. It can be concluded that, the effect of the dissipated energy at PRC should not be neglected. Even for connections with relative small stiffness, which are usually idealized as PPC, the reduction can be significant. Thus, PRC can be used at IGF of steel buildings with PMRF to get more economical construction, to reduce the seismic response and to make steel building more seismic load tolerant. Much more research is needed to consider other aspects of the problem to reach more general conclusions.

Seismic pounding effects on adjacent buildings in series with different alignment configurations

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Abdel Shafy, Aly G.A.;Abbas, Yousef A.;Omar, Mohamed;Abdel Latif, Mohamed M.S.;Mahmoud, Sayed
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.289-308
    • /
    • 2018
  • Numerous urban seismic vulnerability studies have recognized pounding as one of the main risks due to the restricted separation distance between neighboring structures. The pounding effects on the adjacent buildings could extend from slight non-structural to serious structural damage that could even head to a total collapse of buildings. Therefore, an assessment of the seismic pounding hazard to the adjacent buildings is superficial in future building code calibrations. Thus, this study targets are to draw useful recommendations and set up guidelines for potential pounding damage evaluation for code calibration through a numerical simulation approach for the evaluation of the pounding risks on adjacent buildings. A numerical simulation is formulated to estimate the seismic pounding effects on the seismic response demands of adjacent buildings for different design parameters that include: number of stories, separation distances; alignment configurations, and then compared with nominal model without pounding. Based on the obtained results, it has been concluded that the severity of the pounding effects depends on the dynamic characteristics of the adjacent buildings and the input excitation characteristics, and whether the building is exposed to one or two-sided impacts. Seismic pounding among adjacent buildings produces greater acceleration and shear force response demands at different story levels compared to the no pounding case response demands.

Application of Isolation System to the Lighthouse Structure (등대구조물의 면진시스템 적용방안 연구)

  • Hur, Moo Won;Chun, Young Soo;Kim, Dong Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • In this study, seismic isolation technology to the lighthouse structure is suggested and isolation effects on response reduction are studied for three types of isolation models with the proposed seismic isolation technology. A seismic isolation system is installed on the base of the lighthouse structure in model 1, on the base of the lighthouse lens in model 2, and on the base of both of them in model 3. The dynamic time history analysis verifies that in case of model 1, the earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. Also, the inter-story drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. as a results, model 1 is very effective to mitigate the influence of earthquake on structures. In model 2, isolation effects are valid but special care should be taken to failure of the non-isolated lighthouse sub-structure. In model 3, isolation effects are also valid but the effects are small. model 3 is less effective than model 1.

Numerical study on Floor Response Spectrum of a Novel High-rise Timber-concrete Structure

  • Xiong, Haibei;Zheng, Yingda;Chen, Jiawei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • An innovative high-rise timber-concrete hybrid structure was proposed in previous research, which is composed of the concrete frame-tube structure and the prefabricated timber modules as main structure and substructures, respectively. Considering that the timber substructures are built on the concrete floors at a different height, the floor response spectrum is more effective in estimating the seismic response of substructures. In this paper, the floor response spectra of the hybrid structure with different structural parameters were calculated using dynamic time-history analysis. Firstly, one simplified model that can well predict the seismic response of the hybrid structure was proposed and validated. Then the construction site, the mass ratio and the frequency ratio of the main-sub structure, and the damping ratio of the substructures were discussed. The results demonstrate that the peaks of the floor response spectra usually occur near the vibration periods of the whole structure, among which the first two peaks stand out; In most cases, the acceleration amplification effect on substructures tends to be more evident when the construction site is farther from the fault rupture; On the other hand, the acceleration response of substructures can be effectively reduced with an appropriate increase in the mass ratio of the main-sub structure and the damping ratio of the substructures; However, the frequency ratio of the main-sub structure has no discernible effect on the floor response spectra. This study investigates the characteristics of the floor response spectrum of the novel timber-concrete structure, which supports the future applications of such hybrid structure in high-rise buildings.