Browse > Article
http://dx.doi.org/10.1007/s40069-015-0107-6

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events  

Fakharifar, Mostafa (Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology)
Chen, Genda (Missouri University of Science and Technology)
Dalvand, Ahmad (Department of Engineering, Lorestan University)
Shamsabadi, Anoosh (Office of Earthquake Engineering, California Department of Transportation)
Publication Information
International Journal of Concrete Structures and Materials / v.9, no.3, 2015 , pp. 345-367 More about this Journal
Abstract
Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).
Keywords
earthquake damage; rapid repair; RC column; performance-based seismic engineering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Vosooghi, A., & Saiidi, M. (2010). Post-earthquake evaluation and emergency repair of damaged RC bridge columns using CFRP materials. Rep. no. CCEER-10-05. Reno, NV: Center for Civil Engineering Earthquake Research, Dept. of Civil Engineering, Univ. of Nevada.
2 Vosooghi, A., & Saiidi, M. S. (2012). Design guidelines for rapid repair of earthquake-damaged circular RC bridge columns using CFRP. Journal of Bridge Engineering 18(9), 827-836. doi:10.1061/(ASCE)BE.1943-5592.0000426.   DOI
3 White, T., & Ventura, C. E. (2004). Ground motion sensitivity of a Vancouver-style high rise. Canadian Journal of Civil Engineering 31, 292-307.   DOI
4 Xiao, Y., & Ma, R. (1997). Seismic retrofit of RC circular columns using prefabricated composite jacketing. Journal of Structural Engineering 123(10), 1357-1364.   DOI
5 Yang, J. (2009). Nonlinear responses of high-rise buildings in giant subduction earthquakes. PhD thesis. California Institute of Technology, CA, USA.
6 Yankelevsky, D. Z., & Reinhardt, H. W. (1989). Uniaxial behavior of concrete in cyclic tension. Journal of Structural Engineering, ASCE 115(1), 166-182.   DOI
7 Ying, X. F., Chen, G., Silva, P. F., LaBoube, R., & Yen, P. W. (2006). Thin steel sheet wrapping on RC columns and steel plate strengthening on beam-column joints for seismic ductility and capacity improvements. In National conference on earthquake engineering, paper no. 513, conference proceeding, San Fransisco, CA, USA, April 18-22, 2006.
8 Youm, K. S., Lee, H. E., & Choi, S. (2006). Seismic performance of repaired RC columns. Magazine of Concrete Research 58(5), 267-276.   DOI
9 Abdelnaby, A., & Elnashai, A. (2014). Performance of degrading reinforced concrete frame systems under Tohoku and Christchurch earthquake sequences. Journal of Earthquake Engineering 18(7), 1009-1036. doi:10.1080/13632469.2014.923796.   DOI
10 Andrawes, B., Shin, M., & Wierschem, N. (2009). Active confinement of reinforced concrete bridge columns using shape memory alloys. Journal of Bridge Engineering 15(1), 81-89. doi:10.1061/ASCEBE.1943-5592.0000038.   DOI
11 Arias, A. (1970). A measure of earthquake intensity. In R. J. Hansen (Ed.), Seismic design for nuclear power plants (pp. 438-483). Cambridge, MA: MIT Press.
12 Aschheim, M., & Black, E. (1999). Effects of prior earthquake damage on response of simple stiffness-degrading structures. Earthquake Spectra 15(1), 1-24.   DOI
13 ATC-63. (2009). Quantification of building seismic performance factors. Redwood City, CA: FEMA P695.
14 Baker, J. W., & Cornell, C. A. (2006). Vector-valued ground motion intensity measures for probabilistic seismic demand analysis. Berkeley, CA: Pacific Earthquake Engineering Research Center, College of Engineering, University of California.
15 Baker, J. W., Lin, T., Shahi, S. K., & Jayaram, N. (2011). New ground motion selection procedures and selection motions for the PEER transportation research program. PEER report 2011/03, Berkeley, CA: Pacific Earthquake Engineering Research Center.
16 Billah, A. M., Alam, M. S., & Bhuiyan, M. R. (2013). Fragility analysis of retrofitted multicolumn bridge bent subjected to near-fault and far-field ground motion. Journal of Bridge Engineering. doi:10.1061/(ASCE)BE.1943-5592.0000452.
17 Bearman, C. F. (2012). Post-earthquake assessment of reinforced concrete frames. M.S. Thesis, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA.
18 Berry, M. P., & Eberhard, M. O. (2007). Performance modeling strategies for modern reinforced concrete bridge columns. PEER report 2007/07. Berkeley, CA: Pacific Engineering Research Center, University of California.
19 Bianchi, F., Sousa, R., & Pinho, R. (2011). Blind prediction of a full-scale RC bridge column tested under dynamic conditions. In Proceedings of the 3rd international conference on computational methods in structural dynamics and earthquake engineering (COMPDYN 2011) Corfu, Greece, Paper no. 294.
20 Buckle, I., Friedland, I., Mander, J., Martin, G., Nutt, R., & Power, M. (2006). Seismic retrofitting manual for highway structures: Part 1-bridges (No. FHWA-HRT-06-032).
21 Calderone, A., Lehman, D. E., & Moehle, J. P. (2001). Behavior of reinforced concrete bridge columns having varying aspect ratios and varying lengths of confinement. Berkeley, CA: Pacific Earthquake Engineering Research Center.
22 California Department of Transportation. (2004). Caltrans bridge design specification. Sacramento, CA: California Department of Transportation.
23 Chang, L., Peng, F., Ouyang, Y., Elnashai, A. S., & Spencer, B. F, Jr. (2012). Bridge seismic retrofit program planning to maximize postearthquake transportation network capacity. Journal of Infrastructure Systems 18(2), 75-88.   DOI
24 Di Sarno, L. (2013). Effects of multiple earthquakes on inelastic structural response. Engineering Structures 56, 673-681.   DOI
25 Cho, J. Y., & Pincheira, J. A. (2006). Inelastic analysis of reinforced concrete columns with short lap splices subjected to reversed cyclic loads. ACI Structural Journal 103(2), 280-290.
26 Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics 31(3), 561-582.   DOI
27 Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering 128(4), 526-533.   DOI
28 Dutta, A., & Mander, J. B. (1998). Seismic fragility analysis of highway bridges. In Proceedings of the INCEDE-MCEER center-to-center project workshop on earthquake engineering Frontiers in transportation systems (pp. 22-23).
29 ElGawady, M., Endeshaw, M., McLean, D., & Sack, R. (2009). Retrofitting of rectangular columns with deficient lap splices. Journal of Composites for Construction 14(1), 22-35.   DOI
30 Fakharifar, M., Chen, G., Arezoumandi, M., & ElGawady, M. (2015a). Hybrid jacketing for rapid repair of seismically damaged reinforced concrete columns. Transportation Research Record: Journal of the Transportation Research Board. doi:10.3141/2522-07.   DOI
31 Fakharifar, M., Chen, G., Lin, Z., & Woolsey, Z. (2014a). Behavior and strength of passively confined concrete filled tubes. In The 10th U.S. National conference on earthquake engineering: July 21-25, 2014, Anchorage, AL.
32 Fakharifar, M., Sharbatdar, M. K., & Lin, Z. (2013). Seismic performance and global ductility of reinforced concrete frames with CFRP laminates retrofitted joints. In Structures congress 2013 (pp. 2080-2093). ASCE.
33 Fakharifar, M., Chen, G., Sneed, L., & Dalvand, A. (2015b). Seismic performance of post-mainshock FRP/steel repaired RC bridge columns subjected to aftershocks. Composites Part B: Engineering. doi:10.1016/j.compositesb.2014.12.
34 Fakharifar, M., Dalvand, A., Arezoumandi, M., Sharbatdar, M. K., Chen, G., & Kheyroddin, A. (2014b). Mechanical properties of high performance fiber reinforced cementitious composites. Construction and Building Materials 71, 510-520. doi:10.1016/j.conbuildmat.2014.08.068.   DOI
35 Fakharifar, M., Dalvand, A., Sharbatdar, M. K., Chen, G., & Sneed, L. (2015c). Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved seismic strength and ductility of RC structures. Frontiers of Structural and Civil Engineering. doi:10.1007/s11709-015-0295-9.   DOI
36 Fakharifar, M., Sharbatdar, M. K., Lin, Z., Dalvand, A., Sivandi-Pour, A., & Chen, G. (2014c). Seismic performance and global ductility of RC frames rehabilitated with retrofitted joints by CFRP laminates. Earthquake Engineering and Engineering Vibration, 13(1), 59-73.   DOI
37 FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Prepared by ASCE for Federal Emergency Management Agency, Washington, D.C.
38 Ferracuti, B., Pinho, R., Savoia, M., & Francia, R. (2009). Verification of displacement-based adaptive pushover through multi-ground motion incremental dynamic analyses. Engineering Structures 31(8), 1789-1799.   DOI
39 Filippou, F. C., Popov, E. P., & Bertero, V. V. (1983). Effects of bond deterioration on hysteretic behaviour of reinforced concrete joints. Report EERC 83-19. Berkeley, CA: Earthquake Engineering Research Center, University of California.
40 Ferracuti, B., & Savoia, M. (2005). Cyclic behaviour of FRPwrapped columns under axial and flexural loadings. In Proceedings of the international conference on fracture, Turin, Italy.
41 Fragiadakis, M., Pinho, R., & Antoniou, S. (2008). Modelling inelastic buckling of reinforcing bars under earthquake loading. In M. Papadrakakis, D. C. Charmpis, N. D. Lagaros, Y. Tsompanakis, & A. A. Balkema (Eds.), Progress in computational dynamics and earthquake engineering. Leiden, Netherlands: Taylor & Francis.
42 Grelle, S. V., & Sneed, L. H. (2013). Review of anchorage systems for externally bonded FRP laminates. International Journal of Concrete Structures and Materials 7(1), 17-33. doi:10.1007/s40069-013-0029-0.   DOI
43 Harajli, M., Hamad, B., & Karam, K. (2002). Bond-slip response of reinforcing bars embedded in plain and fiber concrete. Journal of Materials in Civil Engineering 14(6), 503-511.   DOI
44 Haroun, M. A., & Elsanadedy, H. M. (2005). Fiber-reinforced plastic jackets for ductility enhancement of reinforced concrete bridge columns with poor lap-splice detailing. Journal of Bridge Engineering 10(6), 749-757.   DOI
45 Haselton, C. B., Liel, A. B., Taylor Lange, S., & Deierlein, G. G. (2008). Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. PEER report 2007/03. Berkeley, CA: Pacific
46 Jirawattanasomkul, T. (2013). Ultimate shear behavior and modeling of reinforced concrete members jacketed by fiber reinforced polymer and steel. PhD thesis. Hokkaido University, Sapporo, Japan.
47 Engineering Research Center, University of California. HAZUS-MH. (2003). Multi-hazard loss estimation methodology earthquake model. HAZUS-MH MR3 technical manual. Washington, DC: Federal Emergency Management Agency (FEMA).
48 He, R., Sneed, L. H., & Belarbi, A. (2013). Rapid repair of severely damaged RC columns with different damage conditions: An experimental study. International Journal of Concrete Structures and Materials 7(1), 35-50. doi:10.1007/s40069-013-0030-7.   DOI
49 Huang, W., & Andrawes, B. (2014). Seismic performance of SMA retrofitted multiple-frame RC bridges subjected to stong mainshock-aftershock sequences. In 10th U.S. National conference on earthquake engineering (10NCEE) Anchorage, Alaska.
50 Kent, D. C., & Park, R. (1973). Cyclic load behaviour of reinforcing steel. Strain 9(3), 98-103.   DOI
51 Kunnath, S. K., El-Bahy, A., Taylor, A. W., & Stone, W. C. (1997). Cumulative seismic damage of reinforced concrete bridge piers. In Technical report NCEER (No. 97-0006).
52 US National Center for Earthquake Engineering Research. Lee, D. H., Kim, D., & Lee, K. (2009). Analytical approach for the earthquake performance evaluation of repaired/retrofitted RC bridge piers using time-dependent element. Nonlinear Dynamics 56(4), 463-482.   DOI
53 Lee, D. H., Park, J., Lee, K., & Kim, B. H. (2011). Nonlinear seismic assessment for the post-repair response of RC bridge piers. Composites Part B Engineering 42(5), 1318-1329.   DOI
54 Mackie, K. R., & Stojadinovic, B. (2007). R-factor parameterized bridge damage fragility curves. Journal of Bridge Engineering 12(4), 500-510.   DOI
55 Li, Y., Song, R., & Van De Lindt, J. W. (2014). Collapse fragility of steel structures subjected to earthquake mainshockaftershock sequences. Journal of Structural Engineering 140(12), 04014095.   DOI
56 Li, Y., Song, R., van de Lindt, J., Nazari, N., & Luco, N. (2012). Assessment of wood and steel structures subjected to earthquake mainshock-aftershock. In 15th world conference on earthquake engineering, Lisbon, Portugal.
57 Lin, Z., Fakhairfar, M., Wu, C., Chen, G., Bevans, W., Gunasekaran, A. V. K., & Sedighsarvestani, S. (2013). Design, construction and load testing of the Pat Daly Road Bridge in Washington County, MO, with internal glass fiber reinforced polymers reinforcement. Report no. NUTC R275.
58 Madas, P., & Elnashai, A. S. (1992). A new passive confinement model for transient analysis of reinforced concrete structures. Earthquake Engineering and Structural Dynamics 21, 409-431.   DOI
59 Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering 114(8), 1804-1826.   DOI
60 Marson, J., & Bruneau, M. (2004). Cyclic testing of concretefilled circular steel bridge piers having encased fixed-based detail. Journal of Bridge Engineering, ASCE 9(1), 14-23.   DOI
61 Martinez-Rueda, J. E., & Elnashai, A. S. (1997). Confined concrete model under cyclic load. Materials and Structures 30(197), 139-147.   DOI
62 PEER. (2010). Retrieved July 24, 2014, from http://nisee2.berkeley.edu/peer/prediction_contest/?page_id=25.
63 Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. In Symposium on the resistance and ultimate deformability of structures acted on by well defined repeated loads, international association for bridge and structural engineering, Zurich, Switzerland (pp. 15-22).
64 Nazari, N., van de Lindt, J. W., & Li, Y. (2013). Effect of mainshock-aftershock sequences on woodframe building damage fragilities 1. Journal of Performance of Constructed Facilities 29(1), 04014036.   DOI
65 Nielson, B. G., & DesRoches, R. (2007). Analytical seismic fragility curves for typical bridges in the central and southeastern United States. Earthquake Spectra 23(3), 615-633.   DOI
66 Pinto, A. V., Verzeletti, G., Pegon, P., Magonette, G., Negro, P., & Guedes, J., (1996). Pseudo-dynamic testing of largescale R/C Bridges. Report EUR 16378, Ispra (VA), Italy.
67 Priestley, M. J. N., Calvi, G. M., & Kowalsky, M. J. (2007). Displacement based seismic design of structures. Pavia, Italy: Istituto Universitario di Studi Superiori Press.
68 Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. New York, NY: Wiley.
69 Ribeiro, F. L., Barbosa, A. R., & Neves, L. C. (2014). Application of reliability-based robustness assessment of steel moment resisting frame structures under post-mainshock cascading events. Journal of Structural Engineering 140(8), A4014008.   DOI
70 Rodriguez, M. E., Botero, J. C., & Villia, J. (1999). Cyclic stress-strain behavior of reinforcing steel including effect of buckling. Journal of Structural Engineering 125(6), 605-612.   DOI
71 Saatcioglu, M., & Grira, M. (1999). Confinement of reinforced concrete columns with welded reinforced grids. ACI Structural Journal 96(1), 29-39.
72 Saatcioglu, M., & Yalcin, C. (2003). External prestressing concrete columns for improved seismic shear resistance. Journal of Structural Engineering 129(8), 1057-1070.   DOI
73 Schoettler, M. J., Restrepo, J. I., Guerrini, G., Duck, D. E., & Carrea, F. (2012). A full-scale, single-column bridge bent tested by shake-table excitation. Las Vegas, NV: Center for Civil Engineering Earthquake Research, Department of Civil Engineering, University of Nevada.
74 Scholz, C. H. (2002). The mechanics of earthquakes and faulting. Cambridge, MA: Cambridge University Press.
75 Scott, M. H., & Fenves, G. L. (2006). Plastic hinge integration methods for force-based beam-column elements. Journal of Structural Engineering 132(2), 244-252.   DOI
76 Seismosoft. (2013a). SeismoStruct-A computer program for static and dynamic nonlinear analysis of framed structures. www.seismosoft.com.
77 Seismosoft. (2013b). SeismoStruct ver. 6.0 and 7.0-Verification report.
78 Shamsabadi, A., Khalili-Tehrani, P., Stewart, J. P., & Taciroglu, E. (2009). Validated simulation models for lateral response of bridge abutments with typical backfills. Journal of Bridge Engineering 15(3), 302-311. doi:10.1061/(ASCE)BE.1943-5592.0000058.   DOI
79 Sivaselvan, M., & Reinhorn, A. M. (1999). Hysteretic models for cyclic behavior of deteriorating inelastic structures. Report MCEER-99-0018, MCEER/SUNY/Buffalo.
80 Shinozuka, M., Feng, M. Q., Kim, H. K., & Kim, S. H. (2000). Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics 126(12), 1287-1295.   DOI
81 Sivaselvan, M., & Reinhorn, A. M. (2001). Hysteretic models for deteriorating inelastic structures. Journal of Engineering Mechanics ASCE 126(6), 633-640, with discussion by Wang and Foliente and closure in Vol. 127, No. 11.
82 Spoelstra, M., & Monti, G. (1999). FRP-confined concrete model. Journal of Composites for Construction, ASCE 3, 143-150.   DOI
83 Tehrani, P., & Mitchell, D. (2013). Seismic risk assessment of four-span bridges in Montreal designed using the Canadian Bridge design code. Journal of Bridge Engineering 19(8), A4014002.   DOI
84 Terzic, V., & Stojadinovic, B. (2013). Hybrid simulation of bridge response to three-dimensional earthquake excitation followed by truck load. Journal of Structural Engineering 140(8), A4014010.
85 USGS. (2012). United States Geological Survey. http://www.usgs.gov/.
86 Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics 31(3), 491-514.   DOI
87 Villaverde, R. (2007). Methods to assess the seismic collapse capacity of building structures: State of the art. Journal of Structural Engineering 133(1), 57-66.   DOI