• 제목/요약/키워드: dynamic stiffness matrix

검색결과 253건 처리시간 0.02초

Investigation on low velocity impact on a foam core composite sandwich panel

  • Xie, Zonghong;Yan, Qun;Li, Xiang
    • Steel and Composite Structures
    • /
    • 제17권2호
    • /
    • pp.159-172
    • /
    • 2014
  • A finite element model with the consideration of damage initiation and evolution has been developed for the analysis of the dynamic response of a composite sandwich panel subject to low velocity impact. Typical damage modes including fiber breakage, matrix crushing and cracking, delamination and core crushing are considered in this model. Strain-based Hashin failure criteria with stiffness degradation mechanism are used in predicting the initiation and evolution of intra-laminar damage modes by self-developed VUMAT subroutine. Zero-thickness cohesive elements are adopted along the interface regions between the facesheets and the foam core to simulate the initiation and propagation of delamination. A crushable foam core model with volumetric hardening rule is used to simulate the mechanical behavior of foam core material at the plastic state. The time history curves of contact force and the core collapse area are obtained. They all show a good correlation with the experimental data.

함정운동을 고려한 유도탄의 발사초기 동력학 해석 (Missile Flyout Launch Dynamic Analysis Including Ship Motion)

  • 안진수
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.37-49
    • /
    • 2002
  • In this paper, flyout stability of missile that is launched in inclined launcher using sabots is analyzed. To include missile bending motion during flyout, FEA model of missile is converted into eight concentrated mass and equivalent stiffness matrix. Six d.o.f ship motion that have influence on flyout stability is modeled and missile firing time is modeled as probability variable to take arbitrary ship attitude into account. Gap between missile and sabot is modeled as normal distribution probability variable and Monte Carlo simulation is performed. As results, the coriolis acceleration effects by ship motion are analyed and statistical results of missile pitch rate are shown.

Analysis on lateral vibration characteristics of the deep-sea mining pipe

  • Xiao, Linjing;Liu, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.835-851
    • /
    • 2022
  • This paper analyzes the variation law of the pipe lateral vibration characteristics, it was treated as a beam model, and was dispersed into several subunits based on the FEM. The corresponding stiffness and mass matrix of the pipe was deduced by using Hermite interpolation function, and the overall dynamic balance equation was established. The lateral vibration under different pipe lengths, thicknesses and towing speeds are solved by integral method. The results show that the pipe vibration trend decreases first and then increases, and the vibration value at the ore bin is larger than that at the pump set, and the value at the top is the largest, and the least value location can change with the length increase. Increasing length and thickness can reduce lateral vibration value, while increasing speed can increase the value. Neither the thickness nor the towing speed will change the location where the least value occurs. The vibration intensity will increase with the decrease of pipe length and thickness and the increase of towing speed.

Size dependent torsional vibration of a rotationally restrained circular FG nanorod via strain gradient nonlocal elasticity

  • Busra Uzun;Omer Civalek;M. Ozgur Yayli
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.175-186
    • /
    • 2024
  • Dynamical behaviors of one-dimensional (1D) nano-sized structures are of great importance in nanotechnology applications. Therefore, the torsional dynamic response of functionally graded nanorods which could be used to model the nano electromechanical systems or micro electromechanical systems with torsional motion about the center of twist is examined based on the theory of strain gradient nonlocal elasticity in this work. The mathematical background is constructed based on both strain gradient theory and Eringen's nonlocal elasticity theory. The equation of motions and boundary conditions of radially functionally graded nanorods are derived using Hamilton's principle and then transformed into the eigenvalue analysis by using Fourier sine series. A general coefficient matrix is obtained to assemble the Stokes' transformation. The case of a restrained functionally graded nanorod embedded in two elastic springs against torsional rotation is then deeply investigated. The effect of changing the functionally graded index, the stiffness of elastic boundary conditions, the length scale parameter and nonlocal parameter are investigated in detail.

불균일 단면을 갖는 저장력 예인케이블에 관한 수치해석적 연구 (A STUDY ON NUMERICAL SIMULATION OF TOWED LOW-TENSION CABLE WITH NONUNIFORM CHARACTERISTICS)

  • 정동호;박한일
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.161-166
    • /
    • 2002
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities become predominant. In this study, three-dimensional (3-D) dynamic behavior of a towed low-tension cable with non-uniform characteristics is numerically analyzed by considering fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.

  • PDF

평판형 트러스구조물의 연속체 모델링 및 동적해석 (Continuum Modeling and dynamic Analysis of Platelike Truss Structures)

  • 이우식;김종윤
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1021-1029
    • /
    • 1992
  • 본 연구에서는 거대한 평판형 격자구조물에 대한 등가 연속체모델을 유도하기 위한 보다 간편하고 합리적인 방법을 개발하고, 예제해석을 통해 새로이 개발된 방법 의 타당성을 보이는데 있다.

Alternative numerical method for identification of flutter on free vibration

  • Chun, Nakhyun;Moon, Jiho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • 제24권4호
    • /
    • pp.351-365
    • /
    • 2017
  • The minimization method is widely used to predict the dynamic characteristics of a system. Generally, data recorded by experiment (for example displacement) tends to contain noise, and the error in the properties of the system is proportional to the noise level (NL). In addition, the accuracy of the results depends on various factors such as the signal character, filtering method or cut off frequency. In particular, coupled terms in multimode systems show larger differences compared to the true value when measured in an environment with a high NL. The iterative least square (ILS) method was proposed to reduce these errors that occur under a high NL, and has been verified in previous research. However, the ILS method might be sensitive to the signal processing, including the determination of cutoff frequency. This paper focused on improving the accuracy of the ILS method, and proposed the modified ILS (MILS) method, which differs from the ILS method by the addition of a new calculation process based on correlation coefficients for each degree of freedom. Comparing the results of these systems with those of a numerical simulation revealed that both ILS and the proposed MILS method provided good prediction of the dynamic properties of the system under investigation (in this case, the damping ratio and damped frequency). Moreover, the proposed MILS method provided even better prediction results for the coupling terms of stiffness and damping coefficient matrix.

크랙을 가진 탄성지지된 유체유동 외팔파이프의 동적 안정성 (Dynamic Stability of Elastically Restrained Cantilever Pipe Conveying Fluid with Crack)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.177-184
    • /
    • 2008
  • The dynamic stability of elastically restrained cantilever pipe conveying fluid with crack is investigated in this paper. The pipe, which is fixed at one end, is assumed to rest on an intermediate spring support. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of a crack severity and position, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. Also, the critical flow velocity for the flutter and divergence due to variation in the support location and the stiffness of the spring support is presented. The stability maps of the pipe system are obtained as a function of mass ratios and effect of crack.

경계요소-유한요소 연계법에 의한 구형 수조구조물의 동적거동 특성해석 (Analysis of Dynamic Behavior of Flexible Rectangular Liquid Containers by the Coupled Boundary Element-Finite Element Method)

  • 고현무;박장호;김재관
    • 대한토목학회논문집
    • /
    • 제14권5호
    • /
    • pp.1033-1042
    • /
    • 1994
  • 2차원 경계요소-유한요소 연계법을 사용하여 구형 수조구조물의 동적거동 특성을 파악하였다. 비점성, 비압축성 이상유체의 운동은 경계요소법으로 모델링하였으며 구조물의 운동은 유한요소법으로 모델링하였다. 경계요소법의 적용시 Singularity를 소거한 경계적분식을 사용하였다. 유체와 구조물의 경계면에서 적합조건과 평형조건을 만족시킴으로써 경계요소와 유한요소를 연계하였다. 유체-구조물 상호작용의 영향은 유체의 부가질량행렬과 유체 유동에 의한 강성행렬로 연계된 유체-구조물계에 반영된다. 연계된 유체-구조물계의 고유치 문제로부터 수조구조물의 고유진동수외 고유모드를 구하였으며 수평 및 수직 자바운동에 의하여 수조구조물에 발생하는 유체동압력과 자유수면의 유동도 산출하였다.

  • PDF

유한차분법을 이용한 저장력 예인케이블의 비선형 동적해석 (Nonlinear Dynamic Analysis on Low-Tension Towed Cable by Finite Difference Method)

  • 박한일;정동호
    • 대한조선학회논문집
    • /
    • 제39권1호
    • /
    • pp.28-37
    • /
    • 2002
  • 본 연구에서는 저장력 예인케이블의 비선형 동적거동을 수치적으로 해석하였다. 고장력 케이블해석에서는 흔히 무시되는 굽힘강성의 효과가 저장력 케이블에서는 중요한 역할을 하므로 본 연구에서는 이를 고려하였다. 또한 저장력 케이블에서는 대변위가 발생하기 쉬우므로 기하학적인 비선형 및 유체 비선형 효과가 크므로 이를 고려하였다. 저장력 예인케이블에 대한 3차원 비선형 운동방정식을 수립하고 유한차분법을 적용하여 이산화 시켰다. 시간적분에 있어서 안정적인 해를 얻을 수 있는 음해법(implicit method)을 적용하였으며 비선형 해를 구하기 위하여 Newton-Raphson 반복법을 사용하였다. 케이블과 같이 양단경계조건을 갖고 대각선 주변 성분만 있는 행렬식을 계산하는 경우에는 Gauss-Jordan 방법 등과 같이 일반적인 방법 보다 블록삼중대각행렬 풀이법이 계산시간을 상당히 줄일 수 있음을 알 수 있었다. 몇 가지 예제해석을 수행하였으며 실해역 실험결과에 의해 이미 검증되어 있는 케이블 해석프로그램인 WHOI Cable 프로그램의 해석결과와 비교 검토한 결과 서로 잘 일치함을 알 수 있었다.