• Title/Summary/Keyword: dynamic state feedback

Search Result 223, Processing Time 0.026 seconds

Global Regulation of a Class of Nonlinear Systems with Time-varying Delays in the Input and States with Matrix Inequality and Non-predictor Methods (행렬 부등식과 비예측 기법을 이용한 입력과 상태에 시변지연이 있는 비선형 시스템의 전역 안정화)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.491-495
    • /
    • 2016
  • We deal with the regulation problem of nonlinear systems with time-varying delays in both the states and input. A new state feedback controller with dynamic gains is developed based on matrix inequality and non-predictor methods. The proposed control scheme is analyzed using the Razumikhin theorem, and its effectiveness is demonstrated with simulation results.

Controller Design for Static Reactive Power Generator in Transmission System

  • Han, B.M.;Soh, Y.C.;Kim, H.W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.398-403
    • /
    • 1998
  • This paper describes a controller design for the stator reactive power generator in the transmission system. The controller of static reactive power generator was designed using a mathematical model and non-linear state feedback. The performance of controller was verified using computer simulation with EMTP code and experimental work with scaled-model. The dynamic interaction with a simple power system was also analyzed using both the simulation model and hardware scaled-model. Both simulation and experimental results prove that the controller using PI block and non-linear state feedback offers better performance than the controller using PI block only.

  • PDF

A Study of Control for Robot Manipulator Using Nonlinear State Feedback (비선형 상태궤환을 이용한 로보트 매니퓰레이터의 제어에 관한 연구)

  • Han, Sang-Wan;Choi, Hyoun-Chul;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.886-888
    • /
    • 1995
  • Models of industrial robot manipulators are characterized by highly nonlinear equation with coupling between the variables of motion. In this paper, a case study that illustrates the use or nonlinear state feedback to decouple the control of a two axis SCARA type robot manipulator is presented. This method is based on a suitable partition about the dynamic equation of industrial robots. The performance of this method is showed by the computer simulation.

  • PDF

A Study on Adaptive Converter Control Approach for Velocity Control of Electric Motors with Photovoltaic Power Generators (태양광 발전 기반 전동기 속도 제어를 위한 적응형 컨버터 제어 기법에 관한 연구)

  • Park, Sung Won;Kim, Dong Wan;Cho, Hyun Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1400-1406
    • /
    • 2016
  • This paper presents a new adaptive converter control approach for electric motor systems whose voltage source is excited from photovoltaic (PV) power generators. First, an electric model is represented with dynamic states and output velocity of such DC motor systems. We propose a hybrid converter control law in which a state feedback control is applied as an auxiliary control framework. Moreover, control parameter estimation is derived to realize adaptive converter systems for effective control performance against stochastic PV power excitation in practice. We carry out stability analysis for such converter system by using a well-known eigenvalue theory. Lastly, numerical simulation is conducted to test reliability of the proposed converter control approach and prove its superiority in the control point of view.

Optimal Sliding-Mode Controller Design based on State Observer (관측기 기반 하의 최적 슬라이딩 모드 제어기 설계)

  • Hong, Min-Suk;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.119-121
    • /
    • 2005
  • The sliding-mode control technique could make a system unstable which external disturbance and uncertainty exists in. This paper suggests a robust sliding-mode control algorithm which can be applied to a linear system with parameter uncertainties. To reduce the chattering effect, the whole system is comprised of using a state variable in which the state's estimated value is added. The condition of estimated state results from state observer. The proposed control algorithm uses the optimal feedback controller following the dynamic system equation which consists of a state variable resulting from its own state variable, controller input, estimated state variable. Through comparison with the time optimal control algorithm using simulation, the suggested algorithm shows the improved stability and robustness while it manifests the fast tracking characteristics.

  • PDF

A State Estimator for servo system using discrete Kalman Filter (이산형 칼만 필터를 이용한 서보 시스템의 상태 추정자 설계)

  • Shin, Doo-Jin;Yum, Hyung-Sun;Huh, Uk-Youl;Lee, Je-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.420-422
    • /
    • 1998
  • In this paper, we propose a position-speed control of servo system with a state estimator. And also we utilized two mass modelling in order to deals with real system accurately. The overall control system consists of two parts: the position-speed controller and state estimator. The Kalman filter applied as state - feedback controller is an optimal state estimator applied to a dynamic system that involves random perturbations and gives a linear,unbiased and minimun error variance recursive algorithm to estimate the unknown state optimally. Therefore we consider the error problem about the servo system modelling, the measurement noise at low-speed ranges a stochastic system, and implement a optimal state observer. Performance of the proposed state estimator are demonstrated by computer simulations.

  • PDF

Characteristic Analysis and Control of Three Phase PWM Buck AC-AC Converter (3상 PWM Buck AC-AC 컨버터의 특성해석과 제어)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1283-1290
    • /
    • 2003
  • Recently, PWM Buck AC-AC Converter is widely employed in various industrial applications such as voltage and power regulator, electronic transformer, phase shifter and so on. This paper presents static and dynamic modeling and complete characteristic analysis of a PWM Buck AC-AC converter. Firstly, the three phase converter system is modelled by using DQ transformation whereby we can obtain basic characteristic equations such as voltage gain and power factor as well as state equation and transfer function for control. Secondly, based on the analysis, the feedforward-feedback control technique is also proposed to obtain instantaneous duty level change whereby very fast dynamic response is achieved. Finally, the experimental results show the validity of the modeling, analysis and control.

Pressure Control of a Pneumatic Conrol system with a long Transmission Line (긴 전달관로를 갖는 공압제어계의 압력 제어)

  • Jang, Ji-Seong;Lee, Kwang-Kuk;Choi, Myung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.567-576
    • /
    • 2003
  • In this study, a robust controller to control pressure in a pneumatic pressure vessel with a long transmission line is proposed. Frequency response of transmission line using compressible fluid is changed by the flowing state of the fluid. So, it a fixed gain controller designed based on a model supposed the flowing state to a specific state, the performance of the control system could be degraded because of the modelling error. The controller designed in this study is composed of two parts. One is a feedback controller to improve a feedback characteristics and to compensate the influence of the variation of transfer characteristics of a transmission line owing to the change of flowing state and the other is a feedforward controller to regulate command fallowing performance. The experimental results with the designed controller show that the robustness of the control system is achieved regardless of the change of the model or the transmission line. Therefore, the designed controller can be utilized for the Performance improvement of a Pressure control system with a long transmission line using compressible fluid.

Policy Iteration Algorithm Based Fault Tolerant Tracking Control: An Implementation on Reconfigurable Manipulators

  • Li, Yuanchun;Xia, Hongbing;Zhao, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1740-1751
    • /
    • 2018
  • This paper proposes a novel fault tolerant tracking control (FTTC) scheme for a class of nonlinear systems with actuator failures based on the policy iteration (PI) algorithm and the adaptive fault observer. The estimated actuator failure from an adaptive fault observer is utilized to construct an improved performance index function that reflects the failure, regulation and control simultaneously. With the help of the proper performance index function, the FTTC problem can be transformed into an optimal control problem. The fault tolerant tracking controller is composed of the desired controller and the approximated optimal feedback one. The desired controller is developed to maintain the desired tracking performance at the steady-state, and the approximated optimal feedback controller is designed to stabilize the tracking error dynamics in an optimal manner. By establishing a critic neural network, the PI algorithm is utilized to solve the Hamilton-Jacobi-Bellman equation, and then the approximated optimal feedback controller can be derived. Based on Lyapunov technique, the uniform ultimate boundedness of the closed-loop system is proven. The proposed FTTC scheme is applied to reconfigurable manipulators with two degree of freedoms in order to test the effectiveness via numerical simulation.

Packet Loss Patterns Adaptive Feedback Scheduling for Reliable Multicast

  • Baek, Jin-Suk;Kim, Cheon-Shik;Hong, You-Sik
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • Tree-based reliable multicast protocols provide scalability by distributing error-recovery tasks among several repair nodes. These repair nodes perform local error recovery for their receiver nodes using the data stored in their buffers. We propose a packet loss patterns adaptive feedback scheduling scheme to manage these buffers in an efficient manner. Under our scheme, receiver nodes send NAKs to repair nodes to request packet retransmissions only when the packet losses are independent events from other nodes. At dynamic and infrequent intervals, they also send ACKs to indicate which packets can be safely discarded from the repair node's buffer. Our scheme reduces delay in error recovery because the requested packets are almost always available in the repair node's buffers. It also reduces the repair node's workload because (a) each receiver node sends infrequent ACKs with non-fixed intervals and (b) their sending times are fairly distributed among all the receiver nodes.

  • PDF