• Title/Summary/Keyword: dynamic seismic analysis

Search Result 1,388, Processing Time 0.025 seconds

Peak Factors for Bridges Subjected to Asynchronous Multiple Earthquake Support Excitations

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Accurate response analysis of long span bridges subjected to seismic excitation is important for earthquake hazard mitigation. In this paper, the performance of a typical four span continuous reinforced concrete bridge model subjected to asynchronous multiple seismic excitations at the supports is investigated in both the time and frequency domains and the results are compared with that from a relevant uniform support excitations. In the time domain analysis, a linear modal superposition approach is used to compute the peak response values. In the frequency domain analysis, linear random vibration theory is used to determine the root mean square response values where the cross correlation effects between the modal and the support excitations on the seismic response of the bridge model are included. From the two sets of results, a practical range of peak factors which are defined to be the ratio of peak and the root mean square responses are suggested for displacements and forces in members. With reliable practical values of peak factors, the frequency domain analysis is preferred for the performance based design of bridges because of the computational advantage and the generality of the results as the time domain analysis only yields results for the specific excitation input.

Aseismic analysis for large underground structure (대형 지하구조물의 내진해석)

  • Choi, Seung-Ho;Pam, Inn-Joon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2009
  • The large underground structure under earthquake is affected more by soil dynamic characteristic and volume of structure than by structural dynamic characteristic itself. Therefore, it is the purpose of research that the aseismic analysis for caverns including various aseismic analysis factors (rock quality-Q value, soil dynamic characteristic, shape ratio $&$ volume, underground structural dynamic characteristic, and aseismic level) are applied by using the numerical analysis program (SAUS; seismic analysis of underground structures). The result of research is stated that maximum strain, maximum moment, and maximum shear are not sensitive with respect to shape ratio. However those values are sensitive with respect to Q value, volume of underground structure and aseismic level. Based on the results of this research, the assessment for the influence factors of aseismic analysis for large underground structure could be possible.

The Evaluation for Stability at Joint Part in Composition Dam (복합댐 접합부의 안정성 평가)

  • Kim, Jae-Hong;Oh, Byung-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.155-166
    • /
    • 2008
  • Research dam is consisted of concrete gravity dam that right bank department is built to concrete material, left bank department is composition dam that is consisted of rockfill dam that consist of rockfill material In domestic case, composition dam form of storage of water facilities of about 17,000 does not exist hardly in dam of irrigation water industry drinking water purpose that manage local government or other institution, Even if exist, is real condition that there is total nonexistence administrator fare of facilities, Choose unique dam of domestic multipurpose dam and analyzed conduct special quality of con'c gravity dam and rockfill dam joint part To analyze dynamic conduct special quality of composition dam by analytic method in this research, Do modelling via axis of dam and achieved static(Psuedo-static, modify Psuedo-static) and dynamic analysis, When achieving earthquake response analysis, analyzed seismic response analysis between concrete part and rockfill's part.

A New Assessment of Liquefaction Potential Based on the Dynamic Test (진동시험에 기초한 액상화 상세예측법 개발)

  • Kim, Soo-Il;Choi, Jae-Soon;Kang, Han-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.245-252
    • /
    • 2004
  • When some enormous earthquake hazards broke out in the neighboring Japan and Taiwan, many Korean earthquake engineers thought that seismic guidelines must be adjusted safely and economically to consider the moderate earthquake characteristics. In the present aseismic guideline for liquefaction potential assessment, a simplified method using SPT-N value and a detail method based on the dynamic lab-tests were introduced. However, it is said that these methods based on the equivalent stress concept to simplify an irregular earthquake are not reliable to simulate the kaleidoscopical characteristics of earthquake loading correctly. Especially, even though various data from the dynamic lab-test can be obtained, only two data, a maximum cyclic load and a number of cycle at an initial liquefaction are used to determine the soil resistance strength in the detailed method. In this study, a new assessment of liquefaction potential is proposed and verified. In the proposed assessment, various data from dynamic lab-tests are used to determine the unique soil resistance characteristic and a site specific analysis is introduced to analyze the irregular earthquake time history itself. Also, it is found that the proposed assessment is reasonable because it is devised to reflect the changeable soil behavior under dynamic loadings resulted from the generation and development of excess pore water pressure.

  • PDF

Dynamic Interactions between the Reactor Vessel and the CEDM of the Pressurized Water Reactor (가압경수로 원자로용기와 제어봉 구동장치의 동적 상호작용)

  • Jin, Choon-Eon
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.837-845
    • /
    • 1997
  • The dynamic interactions between the reactor vessel and the control element drive mechanisms (CEDMs) of a pressurized water reactor are studied with the simplified mathematical model. The CEDMs are modeled as multiple substructures having different masses and the reactor vessel as a single degree of freedom system. The explicit equation for the frequency responses of the multiple substructure system are presented for the case of harmonic base excitations. The optimum dynamic characteristics of the CEDMs are presented to reduce the dynamic responses of the reactor vessel. The mathematical model and its response equations are verified by finite element analysis for the detailed model of the reactor vessel and the CEDMs for the harmonic base excitations. It is finally shown that the optimal dynamic characteristics of the CEDM presented can be applicable for the aseismic design.

  • PDF

3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System (지반-골조구조물 상호작용계의 3차원 정.동적 해석)

  • 서상근;장병순
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.243-254
    • /
    • 1997
  • When dynamic loads such as mechanical load, wind load, and seismic load, which causing a vibration, acts on the body of the 3-D framework resting on soil foundation, it is required to consider the dynamic behavior of soil-space framework interation system. Thus, this study presents the 3-dimensional soil-interaction system analyzed by finite element method using 4-node plate elements with flexibility, 2-node beam elements, and 8-node brick elements for the purpose of idealizing an actual structure into a geometric shape. The objective of this study is the formulation of the equation for a dynamic motion and the development of the finite element program which can analyze the dynamic behavior of soil-space framework interaction system.

  • PDF

Seismic Soil-Structure Interaction Analyses of LNG Storage Tanks Depending on Foundation Type (기초 형식에 따른 LNG 저장탱크의 지반-구조물 상호작용을 고려한 지진응답 분석)

  • Son, Il-Min;Kim, Jae-Min;Lee, Changho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.155-164
    • /
    • 2019
  • In this study, the soil-structure interaction(SSI) effect on the seismic response of LNG storage tanks was investigated according to the type of foundation. For this purpose, a typical of LNG storage tank with a diameter of 71m, which is constructed on a 30m thick clay layer over bedrock was selected, and nonlinearity of the soil was taken into account by the equivalent linearization method. Four different types of foundations including shallow foundation, piled raft foundation, and pile foundations(surface and floating types) were considered. In addition, the effect of soil compaction in group piles on seismic response of the tank was investigated. The KIESSI-3D, which is a SSI analysis package in the frequency domain, was used for the SSI analysis. Stresses in the outer tank, and base shear and overturning moment in the inner tank were calculated. From the comparisons, the following conclusions could be made: (1) Conventional fixed base seismic responses of outer tank and inner tank can be much larger than those of considering the SSI effect; (2) The influence of SSI on the dynamic response of the inner tank and the outer tank depends on the foundation types; and (3) Change in the seismic response of the structure by soil compaction in the piled raft foundation is about 10% and its effect is not negligible in the seismic design of the structure.

Retrofit of a hospital through strength reduction and enhanced damping

  • Viti, Stefania;Cimellaro, Gian Paolo;Reinhorn, Andrei M.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.339-355
    • /
    • 2006
  • A procedure to retrofit existing essential facilities subjected to seismic excitation is proposed. The main features of this procedure are to reduce maximum acceleration and associated forces in buildings subjected to seismic excitation by reducing their strength (weakening). The weakening retrofit, which is an opposite strategy to strengthening, is particularly suitable for buildings having overstressed components and foundation supports or having weak brittle components. However, by weakening the structure large deformations are expected. Supplementaldamping devices however can control the deformations within desirable limits. The structure retrofitted with this strategy will have, therefore, a reduction in the acceleration response and a reduction in the deformations, depending on the amount of additional damping introduced in the structure. An illustration of the above strategy is presented here through an evaluation of the inelastic response of the structure through a nonlinear dynamic analysis. The results are compared with different retrofit techniques. A parametric analysis has also been carried out to evaluate the effectiveness of the retrofitting method using different combination of the performance thresholds in accelerations and displacements through fragility analysis.

Optimization of modal load pattern for pushover analysis of building structures

  • Shayanfar, Mohsen Ali;Ashoory, Mansoor;Bakhshpoori, Taha;Farhadi, Basir
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.119-129
    • /
    • 2013
  • Nonlinear Static Procedures (NSPs) have been developed as a practical tool to estimate the seismic demand of structures. Several researches have accomplished to minimize errors of NSPs, namely pushover procedures, in the Nonlinear Time History Analysis (NTHA), as the most exact method. The most important issue in a typical pushover procedure is the pattern and technique of loading which are extracted based on structural dynamic fundamentals. In this paper, the coefficients of modal force combination is focused involving a meta-heuristic optimization algorithm to find the optimum load pattern which results in a response with minimum amount of errors in comparison to the NTHA counterpart. Other parameters of the problem are based on the FEMA recommendations for pushover analysis of building structures. The proposed approach is implemented on a high-rise 20 storey concrete moment resisting frame under three earthquake records. In order to demonstrate the effectiveness and robustness of the studied procedure the results are presented beside other well-known pushover methods such as MPA and the FEMA procedures, and the results show the efficiency of the proposed load patterns.

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.