DOI QR코드

DOI QR Code

Peak Factors for Bridges Subjected to Asynchronous Multiple Earthquake Support Excitations

  • Received : 2010.12.15
  • Accepted : 2010.12.30
  • Published : 2011.02.28

Abstract

Accurate response analysis of long span bridges subjected to seismic excitation is important for earthquake hazard mitigation. In this paper, the performance of a typical four span continuous reinforced concrete bridge model subjected to asynchronous multiple seismic excitations at the supports is investigated in both the time and frequency domains and the results are compared with that from a relevant uniform support excitations. In the time domain analysis, a linear modal superposition approach is used to compute the peak response values. In the frequency domain analysis, linear random vibration theory is used to determine the root mean square response values where the cross correlation effects between the modal and the support excitations on the seismic response of the bridge model are included. From the two sets of results, a practical range of peak factors which are defined to be the ratio of peak and the root mean square responses are suggested for displacements and forces in members. With reliable practical values of peak factors, the frequency domain analysis is preferred for the performance based design of bridges because of the computational advantage and the generality of the results as the time domain analysis only yields results for the specific excitation input.

지진에 대한 장대 교량의 정확한 반응 해석은 지진 방재에 있어서 중요한 역할을 한다. 본 논문은 비동기 다지지점 지진입력에 의한 교량의 반응을 진동수 영역방법과 시간 영역방법으로 해석하였으며 그 결과를 동기 입력 결과와 비교하였다. 시간영역방법에서는 선형모드 중첩 법으로 최대반응 값을 계산하였다. 진동수영역방법에서는 선형랜덤진동 이론을 사용하여 교량 성능에 영향을 미치는 모드와 다지지점 지진입력의 상호상관관계를 고려한 반응의 제곱평균근(RMS값)을 계산하였다. 교량 성능 반응 중, 변위 및 부재의 내력에 대한 시간 영역해석 결과와 진동수영역 해석 결과로부터 최대반응 값과 RMS값의 비로 정의된 최대반응 계수의 실용적인 값과 계산 방법을 요약하였다. 신뢰 있는 최대 반응계수가 있으면, 교량의 성능기반설계에서 구체적인 임의의 입력을 고려한 시간영역방법보다 결과의 일반성 및 수치적인 장점을 갖은 진동수영역방법이 더 효율적이다.

Keywords

References

  1. Abdel-Ghaffaar, A.M. and Rubin, L.I. (1984) Torsional Earthquake Response of Suspension Bridges.Journal of Engineering Mechanics, ASCE, Vol. 110, No. 10, pp.1467-1484. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:10(1467)
  2. Applied Technology Council (ATC) (1997) Seismic Design Criteria for Bridges and other Highway Structures: Current and Future. ATC-18, Redwood City, Calif.
  3. Burdette, N.J. and Elnashai, A.S. (2008) Effect of Asynchronous Earthquake Motion on Complex Bridges. II: Results and Implications on Assessment. Journal of Bridge Engineering, ASCE, Vol. 13, No. 2, pp. 166-172. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:2(166)
  4. Burdette, N.J., Elnashai, A.S., Lupoi, A. and Sextos, A.G. (2008) Effect of Asynchronous Earthquake Motion on Complex Bridges. I: Methodology and Input Motion. Journal of Bridge Engineering, ASCE, Vol. 13, No. 2, pp. 158-165. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:2(158)
  5. Chandrassekara, S., Nunziante, L., Serino, G. and Carannante, F. (2010) Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures. CRC Press, Boca Raton, Florida.
  6. Chopra, A.K. (2001) Dynamics of Structures. Prentice-Hall, Upper Saddle River, Jew Jersey.
  7. Clough, R.W. and Penzien, J. (1993) Dynamics of Structures, 2nd Ed. McGraw-Hill, New York.
  8. Der Kiureghian, A. and Neuenhofer, A. (1992) Response Spectrum Method for Multi-Support Seismic Excitations. Earthquake Engrg. and Struc. Dynamics, Vol. 21, No. 8, pp. 713-740. https://doi.org/10.1002/eqe.4290210805
  9. Floren, A. and Mohammadi, J. (2001) Performance-Based Design Approach in Seismic Analysis of Bridges. Journal of Bridge Engineering, ASCE, Vol. 6, No. 1, pp. 37-45. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(37)
  10. Heredia-Zavoni, E. and Vanmarcke, E. (1994) Seismic Random- Vibration Analysis of Multisupport Structural Systems. Journal of Engineering Mechanics, ASCE, Vol. 120, No. 5, pp.1107- 1128. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:5(1107)
  11. Housner, G.W. and Jennings, P.C. (1982) Earthquake Design Criteria. Earthquake Engineering Research Institute, Berkeley, Calif., pp. 19-88.
  12. Hudson, D.E. (1979) Reading and Interpreting Strong Motion Accelograms. Earthquake Engineering Research Institute, Berkeley, Calif., pp. 22-97.
  13. Leger, P., Ide, I.M. and Paultre, P. (1990) Multiple Support Seismic Analysis of Large Structure. Computers and Structures, Vol. 36, No. 6, pp. 1153-1158. https://doi.org/10.1016/0045-7949(90)90224-P
  14. Papadrakakis, M., Charmpi, D., Lagaros, N.D. and Tsompanakis, Y. (2009) Computational Structural Dynamics and Earthquake Engineering. CRC Press, Boca Raton, Florida.
  15. Saiidi, M.S., Maragakis, E.M., Isakovic, T. and Randall, M. (1997) Performance-based Design of Seismic Restrainers for Simply- Supported Bridges in Seismic Design Methodologies for the Next Generation of Codes. Balkema, Rotterdam, The Netherlands.
  16. Tan, D. (1994) Discrete Analysis Method for Random Vibration of Structures Subjected to Temporarily and Spatially Correlated Excitations. Computers and Structures, Vol. 50, No. 5, pp.619- 627. https://doi.org/10.1016/0045-7949(94)90421-9