• Title/Summary/Keyword: dynamic seismic analysis

Search Result 1,388, Processing Time 0.027 seconds

Earthquake performance evaluation of three-dimensional roller compacted concrete dams

  • Kartal, Murat Emre;Karabulut, Muhammet
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.167-178
    • /
    • 2018
  • A roller compacted concrete (RCC) dam should be analyzed under seismic ground motions for different conditions such as empty reservoir and full reservoir conditions. This study presents three-dimensional earthquake response and performance of a RCC dam considering materially non-linearity. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The three-dimensional finite element model of Cine RCC dam is obtained using ANSYS software. The Drucker-Prager material model is considered in the materially nonlinear time history analyses for concrete and foundation rock. Furthermore, hydrodynamic effect was investigated in linear and non-linear dynamic analyses. Researchers observe that how the tensile and compressive stresses change by hydrodynamic pressure effect. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. In this study, dam body and foundation are modeled with welded contact. The displacements and principle stress components obtained from the linear and non-linear analyses with and without reservoir water are compared each other. Principle stresses during earthquake were obtained at the most critical point in the upstream face of dam body. Besides, the change of displacements and stresses by crest length were investigated. Moreover demand-capacity ratio criteria were also studied under linear dynamic and nonlinear analysis. Earthquake performance analyses were carried out for different cases and evaluated. According to linear and nonlinear analysis, hydrodynamic water effect is obvious in full reservoir situation. On the other hand, higher tensile stresses were observed in linear analyses and then non-linear analyses were performed and compared with each other.

Parametric Study for Seismic Design of Temporary Retaining Structure in a Deep Excavation by Dynamic Numerical Analysis (동적수치해석을 이용한 대심도 흙막이 가시설 내진설계 변수연구)

  • Yang, Eui-Kyu;Yu, Sang-Hwa;Kim, Dongchan;Kim, Jongkwan;Ha, Ik-Soo;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.45-65
    • /
    • 2022
  • In this paper, a diaphragm wall that supports soils and rock was modeled using FLAC, a finite difference analysis program, to evaluate the seismic behavior of temporary retaining structures in a deep excavation. The appropriateness of the numerical model was verified by comparing its results with those of the centrifuge test performed in a similar condition. The bending moment distribution along the diaphragm wall shows a very similar tendency, and the maximum acceleration obtained at the backfill and top of the wall shows a difference within 5%. Based on the developed model, a parametric study was conducted in various input earthquake, ground, and excavation conditions. The maximum structural forces and bending moment under earthquake loading were compared with the maximum values during excavation, from which the critical condition that requires a seismic design was roughly sorted out. The maximum bending moment of a wall that retains soil layers increased 17%. Particularly, the axial force of struts located in loose soils increased 32% under 100 years return period of an earthquake event, which strongly is estimated to require seismic design for structural safety.

Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea (국내 액상화 평가를 위한 지진파 선정)

  • Jang, Young-Eun;Seo, Hwanwoo;Kim, Byungmin;Han, Jin-Tae;Park, Duhee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2020
  • Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.

A Study on the Liquefaction Potential Evaluation of Reclaimed Land Using Laboratory Test and Field Tests (현장 및 실내시험을 이용한 준설매립지반의 액상화 평가에 관한 연구)

  • Kim, Jong-Kook;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1528-1537
    • /
    • 2005
  • The purpose of this study is investigated the method for estimation of the liquefaction on the reclaimed land, located in Incheon and assessed the ability of liquefaction under the condition of criteria, which is the magnitude '6.5' of seismic on the basis of the domestic seismic characteristics. Performed not only field test but the experiment as well to study how the fine content would affect into the dreging and reclaimed land and also estimated the safety factor through the empirical method and anticipated detail method based on the results. Within the reclaimed land, there are many sized soils which are almost extended from well-graded silty sand(SM) to poor-graded fine grained sand, and which have the condition, so called, the liquefaction which is easily to bring into under the circumstances within the ground. However, partly, now that the soil is mixed with silt and silty clay which include the content of fine grained dust quite a bit, the difficulties and inconveniences has been expected while trying to find the ratio of cyclic resistance, but finally Seed and Idriss method showed the most way when we estimate the safety factor on the liquefaction.

  • PDF

Seismic Retrofit of Asymmetric.Elasto-Plastic Structure Using Viscous Dampers (점성감쇠기를 이용한 비대칭.비탄성구조물의 내진보강)

  • 김진구;방성혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.87-93
    • /
    • 2002
  • A procedure for figuring out proper amount of additional viscous damping required to keep the inelastic deformation of a plan-wise asymmetric structure within a given target performance point was developed. To this end the behavior of an asymmetric nonlinear structure after yielding is investigated. Then a formula for the required amount of equivalent damping was derived based on the ductility demand of the structure. The procedure was applied to a five-story asymmetric structure subjected to an earthquake load. According to the comparison with the results from the dynamic time-history analysis, the structure with viscous dampers installed in accordance with the proposed procedure showed satisfactory seismic performance in both the stiff and the flexible edges.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Seismic Performance Analysis of RC Bridge Piers with 3.5 Aspect Ratio depending on Testing Methods (형상비 3.5 RC교각의 실험 방법에 의한 내진성능 분석)

  • Hong, Hyun-Ki;Park, Chang-Young;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.93-96
    • /
    • 2008
  • This paper deals with the shaking table test(STT), the Quasi-Static Test(QST), and the Pseudo-Dynamic Test(PDT) to evaluate the seismic performance of RC bridge piers under near fault ground motion. Five scaled specimens were constructed the weight of the superstructure was applied through the prestressing strand at the centroid of the column section during the QST and PDT. However, the STT was simulated. The lateral inertia force of the superstructure by the mass frame which was linked with the pier because of the limited payload of shaking table. Particularly for the STT, friction underneath the mass frame was minimized by special details and it was verified by a series of pre-load test. Scale factor of the RC piers was 4.25.

  • PDF

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.