• Title/Summary/Keyword: dynamic response and behavior

Search Result 933, Processing Time 0.027 seconds

Dynamic Characteristic and Fault Analysis of the CANDU Nuclear Fuel Channel (CANDU 핵연료 채널에 대한 동특성 및 결함증상 해석)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.345-349
    • /
    • 2003
  • The dynamic behavior of CANDU nuclear fuel channel was analyzed by the use of 3-dimensional finite element method, under the various fault conditions such as a fault in the end fitting support and the removal/migration of the garter spring in the fuel channel, in order to predict the dynamic behavior for a degraded symptoms of CANDU nuclear fuel channel. Moreover, the frequency response analysis for possible fault conditions was also peformed considering the effects of the pressure tube vibration and flow-induced vibration by the coolant flow. From the analysis of the frequency responses, defects in the garter spring have influenced the changes of 2nd and 3rd modes and all the important modes are varied for the failure in the journal bearing in the end fitting body.

  • PDF

Seismic response and damage development analyses of an RC structural wall building using macro-element

  • Hemsas, Miloud;Elachachi, Sidi-Mohammed;Breysse, Denys
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.447-470
    • /
    • 2014
  • Numerical simulation of the non-linear behavior of (RC) structural walls subjected to severe earthquake ground motions requires a reliable modeling approach that includes important material characteristics and behavioral response features. The objective of this paper is to optimize a simplified method for the assessment of the seismic response and damage development analyses of an RC structural wall building using macro-element model. The first stage of this study investigates effectiveness and ability of the macro-element model in predicting the flexural nonlinear response of the specimen based on previous experimental test results conducted in UCLA. The sensitivity of the predicted wall responses to changes in model parameters is also assessed. The macro-element model is next used to examine the dynamic behavior of the structural wall building-all the way from elastic behavior to global instability, by applying an approximate Incremental Dynamic Analysis (IDA), based on Uncoupled Modal Response History Analysis (UMRHA), setting up nonlinear single degree of freedom systems. Finally, the identification of the global stiffness decrease as a function of a damage variable is carried out by means of this simplified methodology. Responses are compared at various locations on the structural wall by conducting static and dynamic pushover analyses for accurate estimation of seismic performance of the structure using macro-element model. Results obtained with the numerical model for rectangular wall cross sections compare favorably with experimental responses for flexural capacity, stiffness, and deformability. Overall, the model is qualified for safety assessment and design of earthquake resistant structures with structural walls.

Dynamic Analysis of Mechanical Joint Parameters Using the Variation of Frequency Response Function (주파수응답함수의 변화를 이용한 기계적 결합부의 동특성 파라미터 해석)

  • 강성구;지태한;유원희;박영필
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.155-161
    • /
    • 1994
  • The dynamic behavior of a complex mechanical structure can be identified by dividing the structure into a series of smaller structure, called sub- structure and by studying the dynamic characteristics of these components. Generally, the dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this paper, to identify the dynamic characteristics of mechanical structure, and experimental identification method in which directrly measured frequency response function(FRF) is used is considered. The method does not use the procedure of complex matrix calculation but use that of real matrix calculation. To confirm this method, computer simulation is performed by using frequency response function mixed with noise, and the experimental study is performed about the simple structure. The dynamic characteristics of joint parameters and identified more accurately than in using the prcedure of complex matrix calculation.

  • PDF

Effect of vehicle flexibility on the vibratory response of bridge

  • Lalthlamuana, R.;Talukdar, Sudip
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.147-170
    • /
    • 2014
  • In the recent times, dimensions of heavy load carrying vehicle have changed significantly incorporating structural flexibility in vehicle body. The present paper outlines a procedure for the estimation of bridge response statistics considering structural bending modes of the vehicle. Bridge deck roughness has been considered to be non homogeneous random process in space. Influence of pre cambering of bridge surface and settlement of approach slab on the dynamic behavior of the bridge has been studied. A parametric study considering vehicle axle spacing, mass, speed, vehicle flexibility, deck unevenness and eccentricity of vehicle path have been conducted. Dynamic amplification factor (DAF) of the bridge response has been obtained for several of combination of bridge-vehicle parameters. The present study reveals that flexible modes of vehicle can reduce dynamic response of the bridge to the extent of 30-37% of that caused by rigid vehicle model. However, sudden change in the bridge surface profile leads to significant amount of increment in the bridge dynamic response even if flexible bending modes remain active. The eccentricity of vehicle path and flexural/torsional rigidity ratios plays a significant role in dynamic amplification of bridge response.

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

A Study on Dynamic Behaviors of Steel Plate Girder bridge with Applying External Post-Tensioning Method (외부 후긴장 공법 적용에 따른 무도상 판형교의 동적거동 분석)

  • Choi, Dong-Ho;Choi, Jung-Youl;Choi, Jun-Hyeok;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.160-168
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of external post-tensioning method far steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis, field test and laboratory test fur the lateral dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the lateral dynamic response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease lateral acceleration and deflection on steel plate girder bridge for serviceability. And the external post-tensioning method reduce dynamic maximum displacement(about $10{\sim}24%$), the increase of dynamic safety is predicted by adopting external post-tensioning method. From the dynamic test results of the servicing steel plate girder bridge, it is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method The servicing steel plate girder bridge with external post-tensioning has need of the reasonable reinforcement measures which could be reducing the effect of lateral dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

A large-scale test of reinforced soil railway embankment with soilbag facing under dynamic loading

  • Liu, Huabei;Yang, Guangqing;Wang, He;Xiong, Baolin
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.579-593
    • /
    • 2017
  • Geosynthetic reinforced soil retaining walls can be employed as railway embankments to carry large static and dynamic train loads, but very few studies can be found in the literature that investigate their dynamic behavior under simulated wheel loading. A large-scale dynamic test on a reinforced soil railway embankment was therefore carried out. The model embankment was 1.65 meter high and designed to have a soilbag facing. It was reinforced with HDPE geogrid layers at a vertical spacing of 0.3 m and a length of 2 m. The dynamic test consisted of 1.2 million cycles of harmonic dynamic loading with three different load levels and four different exciting frequencies. Before the dynamic loading test, a static test was also carried out to understand the general behavior of the embankment behavior. The study indicated the importance of loading frequency on the dynamic response of reinforced soil railway embankment. It also showed that toe resistance played a significant role in the dynamic behavior of the embankment. Some limitations of the test were also discussed.

A practical study of a quick-acting hydraulic fuse (고성능 유압 휴즈의 특성에 관한 연구)

  • 이성래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.939-944
    • /
    • 1991
  • The dynamic behavior of a quick-acting hydraulic fuse is investigated by analysis and experiment. In view of the short response time, a proper dynamic analysis of the entire hydraulic circuit is necessary, in addition to analysis of the fuse behavior. Dynamic models of the fuse and other hydraulic circuit elements used in the experimental setup are derived and used for computer simulation. Also, the experiments are performed under a variety of operating conditions. Experimental and analytical results are in very good agreement.

  • PDF

Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios

  • Haido, James H.;Abdul-Razzak, Ayad A.;Al-Tayeb, Mustafa M.;Bakar, B.H. Abu;Yousif, Salim T.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • Investigations on the dynamic behavior of concrete members, incorporating steel fibers with different aspect ratios, are limited so far and do not covered comprehensively in prior studies. Present endeavor is devoted to examine the dynamic response of the steel fibrous concrete beams and slabs under the influence of impact loading. These members were reinforced with steel fibers in different length of 25 mm and 50 mm. Four concrete mixes were designed and used based on the proportion of long and short fibers. Twenty-four slabs and beams were fabricated with respect to the concrete mix and these specimens were tested in impact load experiment. Testing observations revealed that the maximum dynamic deflection or ductility of the member can be achieved with increasing the fiber length. Structural behavior of the tested structures was predicted using nonlinear finite element analysis with specific material constitutive relationships. Eight nodes plate elements have been considered in the present dynamic analysis. Dynamic fracture energy of the members was calculated and agreement ratio, of more than 70%, was noticed between the experimental and analysis outcomes.

Dynamic response of functionally graded plates with a porous middle layer under time-dependent load

  • Dergachova, Nadiia V.;Zou, Guangping
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • A dynamic analytical solution for a simply supported, rectangular functionally graded plate with a porous middle layer under time-dependent load based on a refined third-order shear deformation theory with a cubic variation of in-plane displacements according to the thickness and linear/quadratic transverse displacement is presented. The solution achieved in the trigonometric series form and rests on the Green's function method. Two porosity types and their influence on material properties, and mechanical behavior are considered. The network of pores is assumed to be empty or filled with low-pressure air, and the material properties are calculated using the power-law distribution idealization. Numerical calculations have been carried out to demonstrate the accuracy of the kinematic model for the dynamic problem, the effect of porosity, thickness of porous layers, power-law index, and type of loading on the dynamic response of an imperfect functionally graded material plate.