• 제목/요약/키워드: dynamic output-feedback controller

검색결과 111건 처리시간 0.032초

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.

Fixed-Order $H_{\infty}$ Controller Design for Descriptor Systems

  • Zhai, Guisheng;Yoshida, Masaharu;Koyama, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.898-902
    • /
    • 2003
  • For linear descriptor systems, we consider the $H_{INFTY}$ controller design problem via output feedback. Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For fixed-order dynamic $H_{INFTY}$ output feedback, we formulate the control problem equivalently as the one of static output feedback design, and thus the same approach can be applied.

  • PDF

부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 동적 출력 궤환 가변 구조 제어기 (A Dynamic Output Feedback Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2066-2072
    • /
    • 2010
  • In this paper, a variable structure dynamic output feedback controller with an transformed sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty, matched input matrix uncertainty, and disturbance satisfying some conditions. This paper is extended from the results of the static output feedback VSS in [9]. To effectively remove the reaching phase problems, an initial condition of the dynamic output is determined. The previous some limitations on the dynamic output feedback variable structure controller is overcome in this systematic design. A stabilizing control is designed to generate the sliding mode on the predetermined sliding surface S=0 and as a results the closed loop exponential stability is obtained and proved together with the existence condition of the sliding mode on S=0 for all unmatched system matrix uncertainties. To show the usefulness of the algorithm, a design example and computer simulations are presented.

Dynamic Output-Feedback Receding Horizon H$_{\infty}$ Controller Design

  • Jeong, Seung-Cheol;Moon, Jeong-Hye;Park, Poo-Gyeon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.475-484
    • /
    • 2004
  • In this paper, we present a dynamic output-feedback receding horizon $H_{\infty}$controller for linear discrete-time systems with disturbance. The controller is obtained numerically from the finite horizon output-feedback $H_{\infty}$optimization problem, which is, in fact, hardly solved analytically. Under a matrix inequality condition on the terminal weighting matrix, the monotonic decreasing property of the cost is shown. This property guarantees both the closed-loop stability and the $H_{\infty}$norm bound. Then, we extend the proposed design method to a reference tracking problem and a problem for time-varying systems. Numerical examples are given to illustrate the performance of the proposed controller.

DESIGN OF A DYNAMIC OUTPUT FEEDBACK CONTROLLER FOR POWER SUSTEM GENERATORS

  • Danjyo, Mitsuaki;Tanaka, Yukihiko;Kominato, Yoshihito;Sagara, Setsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.871-876
    • /
    • 1989
  • We propose a new algorithm to obtain the output feedback controller, which contains one dynamic element, for power system generators. The performance criterion of this controller is the integral of quadratic form of output differences between reference model and controlled system. with this criterion, we can easily compute the output feedback gains using Astrom's algorithm for the integral calculation of quadratic form.

  • PDF

불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 정적 출력 궤환 가변구조제어기 (A New Robust Discrete Static Output Feedback Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.630-635
    • /
    • 2010
  • In this paper, a new discrete static output feedback variable structure controller based on a new dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed dynamic-type sliding surface. The output feedback discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined dynamic-type sliding surface for guaranteeing the designed output in the dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

측정 잡음을 고려한 저차의 동적출력궤환 제어기 설계 (Low-Order Dynamic Output Feedback Controller Design Against Measurement Noise)

  • 손영익;조남훈;심형보
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.383-388
    • /
    • 2007
  • This paper considers a low-order dynamic output feedback controller design problem. Since the proposed control law inherently has a low-pass filter property, it can alleviate the mal-effects of the sensor noise without additional filter designs. Frequency domain analysis shows the characteristics of the proposed control law against measurement noise. The effectiveness of the proposed control law is illustrated by numerical simulations with a rotary inverted pendulum and a convey-crane. Using only one integrator the proposed control law has the advantage to the stabilization problem with sensor noise as well as it can successfully replace the measurements of derivative terms in a state feedback control law.

H$\infty$ Fuzzy Dynamic Output Feedback Controller Design with Pole Placement Constraints

  • Kim, Jongcheol;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.176.5-176
    • /
    • 2001
  • This paper presents a fuzzy dynamic output feedback controller design method for Parallel Distributed Compensation (PDC)-type Takagi-Sugeno (T-S) model based fuzzy dynamic system with H$\infty$ performance and additional constraints on the closed pole placement. Design condition for these controller is obtained in terms of the linear matrix inequalities (LMIs). The proposed fuzzy controller satisfies the disturbance rejection performance and the desired transient response. The design method is verified by this method for an inverted pendulum with a cart using the proposed method.

  • PDF

로보트 매니퓰레이터에 대한 출력궤환 적응제어기 설계 (Design of an adaptive output feedback controller for robot manipulators)

  • 이강웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.734-738
    • /
    • 1996
  • An adaptive output feedback controller is designed for tracking control of an n-link robot manipulator with unknown load. High-gain observers with same structure as error dynamic systems are used to estimate joint velocities. The parameter adaptation is achieved by the smoothed projection algorithm. The control inputs are saturated outside a domain of interest. Simulation results on a 2-link manipulator illustrate that when the speed of the high-gain observer is sufficiently high, the proposed controller recovers the performance under state feedback control.

  • PDF