• 제목/요약/키워드: dynamic neural network

검색결과 791건 처리시간 0.031초

동적 경쟁학습을 수행하는 병렬 신경망 (Parallel neural netowrks with dynamic competitive learning)

  • 김종완
    • 전자공학회논문지B
    • /
    • 제33B권3호
    • /
    • pp.169-175
    • /
    • 1996
  • In this paper, a new parallel neural network system that performs dynamic competitive learning is proposed. Conventional learning mehtods utilize the full dimension of the original input patterns. However, a particular attribute or dimension of the input patterns does not necessarily contribute to classification. The proposed system consists of parallel neural networks with the reduced input dimension in order to take advantage of the information in each dimension of the input patterns. Consensus schemes were developed to decide the netowrks performs a competitive learning that dynamically generates output neurons as learning proceeds. Each output neuron has it sown class threshold in the proposed dynamic competitive learning. Because the class threshold in the proposed dynamic learning phase, the proposed neural netowrk adapts properly to the input patterns distribution. Experimental results with remote sensing and speech data indicate the improved performance of the proposed method compared to the conventional learning methods.

  • PDF

신경회로를 이용한 6축 로보트의 역동력학적 토크제어 (Inverse Dynamic Torque Control of a Six-Jointed Robot Arm Using Neural networks)

  • 오세영;조문정;문영주
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.816-824
    • /
    • 1991
  • It is well known that dynamic control is needed for fast and accurate control. Neural networks are ideal for representing the strongly nonlinear relationship in the dynamic equations including complex unmodeled effects. It thus creates many advantages over conventional methods such as simple, fast and accurate control through neural network's inherent learning and massive parallelism. In this paper, dynamic control of the full six degrees of freedom of an industrial robot arm will be presented using neural networks. Moreover, through application to a real robot the usefulness of neurocontrol is demonstrated. The back propagation and feedback-error learning is used to train the neurocontroller. Simulated control of a PUMA 560 arm demonstrates that it moves at high speed with good accuracy and generalizes over untrained trajectories as well as adapt to unforseen load changes and sensor noise.

신경회로망을 이용한 동적 시스템의 자기동조 제어기 설계 (Design of auto-tuning controller for Dynamic Systems using neural networks)

  • 조현섭;오명관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 춘계학술발표논문집
    • /
    • pp.147-149
    • /
    • 2007
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 신경망 제어기 설계 (Neural Network Controller with Dynamic Structure for nonaffine Nonlinear System)

  • 박장현;서호준;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.384-384
    • /
    • 2000
  • In adaptive neuro-control, neural networks are used to approximate the unknown plant nonlinearities. Until now, most of the papers in the field of controller design fur nonlinear system using neural networks considers the affine system with fixed number of neurons. This paper considers nonaffne nonlinear systems and dynamic variation of the number of neurons. Control laws and adaptive laws for weights are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Path Tracking Control Using a Wavelet Neural Network for Mobile Robot with Extended Kalman Filter

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2498-2501
    • /
    • 2003
  • In this paper, we present a wavelet neural network (WNN) approach to the solution of the path tracking problem for mobile robots that possess complexity, nonlinearity and noise. First, we discuss a WNN based control system where the control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot. This compact network structure is helpful to determine the number of hidden nodes and the initial value of weights. Then, the data with various noises provided by odometric and external sensors are here fused together by means of an Extended Kalman Filter (EKF) approach for the pose estimation problem of mobile robots. This control process is a dynamic on-line process that uses the wavelet neural network trained via the gradient-descent method with estimates from EKF. Finally, we verify the effectiveness and feasibility of the proposed control system through simulations.

  • PDF

플랜트구조와 신경망에뮬레이터의 구조 및 학습시간과의 관계 (A study on interrelation between the structure of a Plant and the str neural network emulator and the learning rate)

  • 배창한;이광원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.386-389
    • /
    • 1997
  • Error-backpropagation has been used in the bulk of Practical applications for neural networks. While an emulator, a multilayered neural network, learns to identify the system's dynamic characteristics. There is, however, no concrete theoretical results about the structure of a plant and the structure of a multilayered neural network and the learning rate. The paper investigates the relation between structure of a plant and a multilayered network and learning rate. Simulation study shows that the plant signal with a short period and a fast sam time is preferable for learning of the network emulator.

  • PDF

신경 회로망을 이용한 적응 제어 시스템의 설계 (Design of an Adaptive Control System using Neural Network)

  • 장태인;이형찬;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.231-234
    • /
    • 1993
  • This paper deals with the design of an adaptive controller using neural network. We present RBFMLP Neural Network which consists of serial-connected two networks - Radial Basis Function Network and Multi Layer Perceptron, and then design a controller based on proposed networks with the adaptive control system structure, The plant and parameters of the controller are identified by the neural networks. We use the dynamic backpropagation algorithm for the learning of networks. Simulations represent the superiorities of the proposed network and the controller.

  • PDF

신경회로망을 사용한 로봇 매니퓰레이터의 궤적 제어 (Trajectory control for a Robot Manipulator by using neural network)

  • 안덕환;양태규;이상효
    • 한국통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.610-614
    • /
    • 1991
  • 본 논문에서는 신경회로망을 사용한 로보트 매니프레이터와 관절 퀘적 제어방법을 제안하였다. 애니플레이터의 역 동력학 모델을 신경회로망을 통하여 학습시켜서, 그때의 신경회로망의 가중치를 이용하여 애니플레이터를 제어한다. 가중치값의 변화는 선형제어기의 토크값 및 가속도 오차를 이용한다. 실제로 애니플레이터를 제어하는 토크 값은 선형 제어기의 토크값과 신경회로망 제어기 토크값의 합으로 된다. 컴퓨터 시뮬레이션을 통하여 제안된 제어 성능을 평가한다.

  • PDF

감마 다층 신경망을 이용한 시스템 식별 (System Identification Using Gamma Multilayer Neural Network)

  • 고일환;원상철;최한고
    • 융합신호처리학회논문지
    • /
    • 제9권3호
    • /
    • pp.238-244
    • /
    • 2008
  • 동적 신경망은 temporal 신호처리가 요구되는 여러 분야에 사용되어 왔다. 본 논문에서는 다층 신경망의 동특성을 향상시키기 위해 감마 신경망(GAM) 다루고 있다. GAM 신경망은 순방향 다층 신경망의 히든층에 감마 메모리 커널을 사용하고 있다. GAM 신경망은 선형 및 비선형 시스템 식별을 통해 평가되었으며 상대적인 성능평가를 위해 순방향 신경망(FNN)과 리커런트 신경망(RNN)과 비교하고 있다. 실험결과에 의하면 GAM 신경망은 학습속도와 정확도에서 더 우수하게 동작하였으며, 이러한 사실은 시스템 식별에 있어서 GAM 신경망이 기존의 다른 다층 신경망보다 더 효과적인 신경망이 될 수 있음을 보여주었다.

  • PDF

비선형 시스템 제어를 위한 동적 신경망의 최적화 (Optimization of Dynamic Neural Networks for Nonlinear System control)

  • 유동완;이진하;이영석;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.740-743
    • /
    • 1998
  • This paper presents an optimization algorithm for a stable Dynamic Neural Network (DNN) using genetic algorithm. Optimized DNN is applied to a problem of controlling nonlinear dynamical systems. DNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. The real time implementation is very important, and thus the neuro controller also needs to be designed such that it converges with a relatively small number of training cycles. SDNN has considerably fewer weights than DNN. The object of proposed algorithm is to the number of self dynamic neuron node and the gradient of activation functions are simultaneously optimized by genetic algorithms. To guarantee convergence, an analytic method based on the Lyapunov function is used to find a stable learning for the SDNN. The ability and effectiveness of identifying and controlling, a nonlinear dynamic system using the proposed optimized SDNN considering stability' is demonstrated by case studies.

  • PDF