• Title/Summary/Keyword: dynamic network state update

Search Result 13, Processing Time 0.019 seconds

An Efficient Dynamic Network Status Update Mechanism for QoS Routing (QoS 라우팅을 위한 효율적인 동적 네트워크 상태 정보 갱신 방안)

  • Kim, Jee-Hye;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.1
    • /
    • pp.65-76
    • /
    • 2002
  • QoS routing is a routing technique for finding feasible path that satisfies QoS requirements required by application programs. Since QoS routing determines such paths in terms of dynamic network state, it satisfies the requirement of applications and increases the utilization of the network. The overhead is, however, generated by routers to exchange the information of the dynamic state of network. In order to reduce this protocol overhead, a timer based update mechanism is proposed in which router checks the change of the network status periodically and network state information is exchanged if the change is greater than a certain value. Using large update period makes, though, routing performance irresponsive to the parameters which determine the update of the network state of the router. In addition to this, large update period may result in inaccurate network state information at routers and cause resource reservation failure. The resource reservation failure generates additional overhead to cancel the resource reservation of the part of the path. In this paper, we propose mechanisms enhancing the existing network state update policy with respect to these two problems. Performance of the proposed schemes are evaluated through a course of simulation.

An Efficient Algorithm for Dynamic Shortest Path Tree Update in Network Routing

  • Xiao, Bin;Cao, Jiannong;Shao, Zili;Sha, Edwin H.M.
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.499-510
    • /
    • 2007
  • Shortest path tree(SPT) construction is essential in high performance routing in an interior network using link state protocols. When some links have new state values, SPTs may be rebuilt, but the total rebuilding of the SPT in a static way for a large computer network is not only computationally expensive, unnecessary modifications can cause routing table instability. This paper presents a new update algorithm, dynamic shortest path tree(DSPT) that is computationally economical and that maintains the unmodified nodes mostly from an old SPT to a new SPT. The proposed algorithm reduces redundancy using a dynamic update approach where an edge becomes the significant edge when it is extracted from a built edge list Q. The average number of significant edges are identified through probability analysis based on an arbitrary tree structure. An update derived from significant edges is more efficient because the DSPT algorithm neglect most other redundant edges that do not participate in the construction of a new SPT. Our complexity analysis and experimental results show that DSPT is faster than other known methods. It can also be extended to solve the SPT updating problem in a graph with negative weight edges.

A Centralized QoS Routing Architecture with No Dynamic Network State Information Exchange Overhead (동적 네트워크 상태정보 교환 오버헤드를 제거한 중앙 집중적 QoS 라우팅 구조)

  • Kim, Sung-Ha;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.573-582
    • /
    • 2002
  • We propose centralized server based QoS routing schemes, where a route server is responsible for determining QoS paths on behalf of all the routers in a routing domain. In the proposed server based schemes, the dynamic link QoS state information, which is required for a QoS path computation, is implicitly maintained at route server as it assigns or gets back QoS paths. By maintaining the network state information this way, we may not only eliminate the overhead to exchange network state update message but also achieve higher routing performance by utilizing accurate network state information in path computation. We discuss path caching techniques for reducing the amount of path computation overhead at the route server, and evaluate the performance of the proposed schemes using simulation. The simulation results show that the path caching schemes may significantly reduce the route server load. The proposed schemes are also compared to the distributed QoS routing schemes proposed in the literature. It has been shown that the proposed server based schemes not only enhance the routing performance, but they are also competitive with respect to routing overheads.

Performance Evaluation of control and management protocol for Dynamic lightpath setup based GMPLS network (GMPLS 기반의 동적 경로 설정을 위한 제어 및 관리 프로토콜 성능 평가)

  • Kim Kyoung-Mok;Oh Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.9-14
    • /
    • 2004
  • As the internet traffic type and size have bun diversified in recent years, the GMPLS-based distributed control and management protocol have surfaced as a serious issue for dynamic optical lightpath setup. In this reason, we investigated and analyzed network performance and protocols using global information-based link state approach and local information based link state approach. We calculated connection setup time, required control bandwidth and setup blocking probability that made from network update period and threshold metrics according to traffic arrival rate. The evaluated results will be used in broadband network and adopted for high speed network in the future widely.

DNS-based Dynamic Load Balancing Method on a Distributed Web-server System (분산 웹 서버 시스템에서의 DNS 기반 동적 부하분산 기법)

  • Moon, Jong-Bae;Kim, Myung-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.193-204
    • /
    • 2006
  • In most existing distributed Web systems, incoming requests are distributed to servers via Domain Name System (DNS). Although such systems are simple to implement, the address caching mechanism easily results in load unbalancing among servers. Moreover, modification of the DNS is necessary to load considering the server's state. In this paper, we propose a new dynamic load balancing method using dynamic DNS update and round-robin mechanism. The proposed method performs effective load balancing without modification of the DNS. In this method, a server can dynamically be added to or removed from the DNS list according to the server's load. By removing the overloaded server from the DNS list, the response time becomes faster. For dynamic scheduling, we propose a scheduling algorithm that considers the CPU, memory, and network usage. We can select a scheduling policy based on resources usage. The proposed system can easily be managed by a GUI-based management tool. Experiments show that modules implemented in this paper have low impact on the proposed system. Furthermore, experiments show that both the response time and the file transfer rate of the proposed system are faster than those of a pure Round-Robin DNS.

Distributed Optimal Path Generation Based on Delayed Routing in Smart Camera Networks

  • Zhang, Yaying;Lu, Wangyan;Sun, Yuanhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3100-3116
    • /
    • 2016
  • With the rapid development of urban traffic system and fast increasing of vehicle numbers, the traditional centralized ways to generate the source-destination shortest path in terms of travel time(the optimal path) encounter several problems, such as high server pressure, low query efficiency, roads state without in-time updating. With the widespread use of smart cameras in the urban traffic and surveillance system, this paper maps the optimal path finding problem in the dynamic road network to the shortest routing problem in the smart camera networks. The proposed distributed optimal path generation algorithm employs the delay routing and caching mechanism. Real-time route update is also presented to adapt to the dynamic road network. The test result shows that this algorithm has advantages in both query time and query packet numbers.

The Dynamic Flow Admission Control for Providing DiffServ Efficiently in MPLS Networks (MPLS 네트워크에서 DiffServ를 효율적으로 적용하기 위한 동적 흐름 수락 제어)

  • Im, Ji-Yeong;Chae, Gi-Jun
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.45-54
    • /
    • 2002
  • MPLS(Multiprotocol Label Switching) is regarded as a core technology for migrating to the next generation Internet. In this paper, we propose an dynamic flow admission control supporting DiffServ(Differentiated Services) to provide QoS in MPLS networks. Our proposed model dynamically adjusts the amount of admissible traffic based on transmittable capacity over one outgoing port. It then transmits the Packets while avoiding congested area resulting traffic loss. Ingress LSRs find out the congested area by collecting network state information at QoS state update for QoS routing table. Our Proposed model manages the resource efficiently by protecting the waste of resources that is a critical Problem of DiffServ and makes much more flows enter the network to be served.

Online Probability Density Estimation of Nonstationary Random Signal using Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2008
  • We present two estimators for discrete non-Gaussian and nonstationary probability density estimation based on a dynamic Bayesian network (DBN). The first estimator is for off line computation and consists of a DBN whose transition distribution is represented in terms of kernel functions. The estimator parameters are the weights and shifts of the kernel functions. The parameters are determined through a recursive learning algorithm using maximum likelihood (ML) estimation. The second estimator is a DBN whose parameters form the transition probabilities. We use an asymptotically convergent, recursive, on-line algorithm to update the parameters using observation data. The DBN calculates the state probabilities using the estimated parameters. We provide examples that demonstrate the usefulness and simplicity of the two proposed estimators.

A study on link-efficiency and Traffic analysis for Packet-switching using the link state algorithm (링크상태 알고리즘을 이용한 패킷스위칭의 트래픽분석과 링크효율에 관한 연구)

  • 황민호;고남영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • Dynamic routing uses routing protocols to select the best routes and to update the routing table. RP (Routing Information Protocol)using a distance-vector algorithm becomes generally known a routing protocol on the network. RIP selects the route with the lowest "hop count" (metric) as the best route. but RIP has a serious shortcoming. a mP router cannot maintain a complete routing table for a network that has destinations more than 15 hops away. To overcome this defect, It uses the OSPF (Open Shortest Path First) of link -state protocols developed for TCP/IP. It is suitable for very large networks and provides several advantages over RIP. This paper analyzes the traffic and the link efficiency between two protocols such as message delivery and delay, link utilization, message counts on the same network.e network.

The Dynamic Group Authentication for P2P based Mobile Commerce (P2P 기반의 모바일 상거래를 위한 동적 그룹 인증)

  • Yun, Sunghyun
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.335-341
    • /
    • 2014
  • To play the networked video contents in a client's mobile device in real time, the contents should be delivered to it by the contents server with streaming technology. Generally, in a server-client based commerce model, the server is in charge of both the authentication of the paid customer and distribution of the contents. The drawback of it is that if the customers' requests go on growing rapidly, the service quality would be degraded results from the problems of overloaded server or restricted network bandwidth. On the contrary, in P2P based networks, more and more the demand for service increasing, the service quality is upgraded since a customer can act as a server. But, in the P2P based network, there are too many servers to manage, it's possible to distribute illegal contents because the P2P protocol cannot control distributed servers. Thus, it's not suitable for commercial purposes. In this paper, the dymanic group authentication scheme is proposed which is suited to P2P based applications. The proposed scheme consists of group based key generation, key update, signature generation and verification protocols. It can control the seeder's state whether the seeder is joining or leaving the network, and it can be applied to hybrid P2P based commerce model where sales transactions are covered by the index server and the contents are distributed by the P2P protocol.