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Abstract 
 

With the rapid development of urban traffic system and fast increasing of vehicle numbers, the 

traditional centralized ways to generate the source-destination shortest path in terms of travel 

time(the optimal path) encounter several problems, such as high server pressure, low query 

efficiency, roads state without in-time updating. With the widespread use of smart cameras in 

the urban traffic and surveillance system, this paper maps the optimal path finding problem in 

the dynamic road network to the shortest routing problem in the smart camera networks. The 

proposed distributed optimal path generation algorithm employs the delay routing and caching 

mechanism. Real-time route update is also presented to adapt to the dynamic road network. 

The test result shows that this algorithm has advantages in both query time and query packet 

numbers. 
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1. Introduction 

Nowadays vehicles number increases rapidly and continuously, road congestion and 

accidents have become the most common problems in urban traffic system. With the road 
network’s spatial information, communicating system and real-time road state information 
that provided by Intelligent Traffic System(ITS) [1], the shortest path in terms of distance or 
travel time can be obtained between the vehicle’s current location (source) and another 
location given by the driver (destination). Vehicles which can get more accurate path to the 
destination in time would effectively help reducing the urban traffic pressure. 

Naturally, drivers tend to be more interested in the source-destination shortest path in terms 
of travel time, which we call the optimal path. Classical shortest path problems with fixed arc 
lengths have been studied intensively, resulting in the development of a number of efficient 
algorithms. There are many classical shortest path algorithms such as Dijkstra [2], A* [3] and 
also some special algorithms like Arc Flags [4], Precomputed Cluster Distances [5]. Because 
of their long query time or costly precomputation, these approaches could not recommend the 
optimal path when applied to the large dynamic road network. The shortest path information 
over a large dynamic road network in real-time would be highly desirable and beneficial. At 
present, the main method to deal with real-time traffic guidance in ITS is to gather the whole 
road network’s information in data centers and generate the optimal path centrally. 

 As road traffic is inherently dynamic and time-dependent, finding the shortest path online 
in the time-dependent road network would be more challenging and difficult compared to the 
static road network. Variant of improved algorithms have been proposed. Dijkstra’s algorithm 
is extended to the dynamic case through a recursion formula based on the assumption that the 
network has the FIFO property [6]. The A* algorithm with landmark (ALT) [7] used a lower 
bound of each edge during preprocessing. Kiseok Sung et al. [8] proposed a road network 
model with a time-dependent flow speed. A road network model based on history data had also 
be proposed by Gupta A et al [9]. Nevertheless, almost all of the above algorithms need to 
preprocess the history traffic data, which would be time-consuming and not be suitable in a 
large-scale road network with requirement of real-time performance. Furthermore the 
complication of time-dependent road network also makes these algorithms hard to be applied.  

In the time-dependent road network, the actual travelling time of the optimal path is 
strongly related to the dynamic traffic condition on the road. A handful of studies have been 
focusing on improving the online computation of road segments’ travelling time. Jinha Kim et 
al.[10] addressed a method to reflect the current road status by dynamically adjusting the 
speed patterns. However, it results in high processing cost during the query execution since the 
path updates need to be propagated to all the successive vehicles on that path. Hans-Peter 
Kriegel et al.[11] proposed two variants of a Lipschitz embedding to speed up common 
proximity queries such as distance range queries and k-nearest neighbor queries. A filter 
approach was employed to avoid unnecessary distance computations. But in time-dependent 
traffic network it still required much more memory and runtime than that of in the static 

network. In [12], Spyros Kontogiannis et al. provided approximate time-dependent distances in 

sublinear query time after preprocessing effort, and also gave the evaluation in experimental 
setting[13]. Nevertheless the high preprocessing effort and space consumption were 
impractical in use. The method named Customizable Route Planning in [14] offloaded most 
preprocessing effort to an initial metric-independent, separator-based phase which resulted in 
less query time. But as the weight changes rapidly in complexity the query time also raise 
higher. All these approaches either preprocess the history travel data or build a new network to 
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simplify the query process. We try to find a more suitable and simple approach to adapt to this 
time-dependent dynamic road network. 

With the continuous deployment of video based traffic surveillance system, camera 
networks that capture data in public road networks are now in quite common use. In recent 
years, embedded smart camera with high-performance computing chips enables its 
applications in intelligent traffic monitoring and surveillance systems [15]. The on-site road 
cameras are mounted at road intersections. In addition to the task of traffic video capture, they 
can have some image processing work, e.g. event detection and vehicle identification as well 
as communicating with their neighboring cameras. The capability of smart cameras brings 
new solutions to the path finding problem in the dynamic road networks. 

Motivated by the distributed spatial keyword querying in a dynamic road network 
proposed by Luo S. et al.[16] and the distributed graph query in the peer-to-peer network 
proposed by Srivatsa M et al.[17]. Both of them pose a novel approach to solve spatial 
keyword query or graph query in a distributed way, differing from the usual centralized setting. 
We apply the optimal path generation in a distributed way for better performance. 

The major contribution of this paper is as follows: we build a real-time traffic flow model 
which maps the optimal path finding problem in the dynamic road network into the network 
routing problem in the distributed smart camera network. Furthermore, we employ the caching 
mechanism in the path routing. This improvement contributes to solve the problem of 
generating the optimal path in a large-scale concurrent query requests. It can speed up the 
query process and reduce the congestion of the data packages communicating in the 
distributed camera network. Besides, a route update algorithm is also proposed in this paper, 
which makes it more adaptive to the dynamic road traffic. 

The rest of this paper is organized as follows: Section 2 states the problem description; 
Section 3 introduces the optimal path generation algorithm based on delayed routing and 
caching. Section 4 shows the simulation experiments and results analysis. Conclusions are 
given in Section 5. 

2. Problem Description 

We would state our problem and concerns for the development of our main contributions after 

clarifying some preliminary terms.  

2.1 Preliminary Terms 

Definition 1 (Road Segment): A road segment r is a directed edge that is associated with two 
road intersections (r.s, r.e) ,  r.s and r.e representing the start and end intersection of the road 
segment. Each road segment has a length r.length. 

Definition 2 (Road Network): A road network is a weighted directed graph G’(V’,E’), 
where V’ is a set of vertices representing the road intersections of the road segments, and 

' ' 'E V V   is a set of edges representing road segments. Every edge 
, ' i je v v E

 has a 
length weight e.length indicating the distance from vi to vj. 

Definition 3 (Dynamic Road Network): A dynamic road network is a road network defined 

in Definition 2 but with an additional time weight on every edge 
, ' i je v v E

. The time 
weight is represented by a time cost function Cvi,vj(t), where t is the arriving time at the 
intersection vi . Cvi,vj(t) represents the travel time from vi to vj starting at time t. 
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Definition 4 (Path): A path R is a set of connected road segments, i.e., R: r1 → r2→ … →rn, 
where rk+1.s =rk.e; (1 ≤ k<n). The start point and end point of a route can be represented as R.s 
= r1.s and R.e = rn.e. 

Smart cameras are deployed at road intersections to serve traffic information collecting and 
processing. A driver would like to get the shortest path to a specific location during his/her 
driving journey. 

Definition 5 (Smart Camera Network): A smart camera network is a undirected graph G(V, 
E), where V is a set of vertices representing the cameras mounted either on the road 

intersections, and E V V   is a set of edges representing communication link between 
neighboring cameras. Here ‘neighboring’ means that there are road segments connecting with 
the adjacent intersections on which the cameras are mounted. 

2.2 Problem Observations 

The road network and camera network can be self-explained in Fig. 1 It can be seen that the 
road network G’ and the camera network G is isomorphic with their same topology. We 
assume that every smart camera mounted on the road intersection is capable of detecting the 
real-time traffic flow and vehicle information, e.g. the number of vehicles passing through, 
vehicle plate ID, color and type. Adjacent cameras can communicate with each other for 
information sharing and online collaboration. Thus queries on the road network G’ can be 
mapped to operations in the smart camera networks G. However, the road network is 
inherently dynamic. The travel time on a road segment in the road network is varying over 
time. Therefore, how to find the optimal path (source-destination shortest path in terms of 
travelling time) in dynamic road network with the help of smart camera networks is our main 
concern. 
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  (a) Road network G’ with camera mounted                           (b) Smart camera network G 

Fig. 1. Road network vs camera network 

When dealing with mapping queries on the road network to operations in the smart camera 
network. The following should be concerned: 

 A weighted directed graph fits the dynamic road network should be built. Every path 
query is launched in a built graph. The time weight of edges in the graph are the main 
factor influencing the result. Thus the time weight of edges must reflect the road 
traffic condition well. 

 A suitable path query algorithm is needed. Many classic shortest path algorithms can 
be found to apply in some static weighted network. But algorithms that can adjust to 
the dynamic road network is highly desired. Furthermore, in the dynamic road 
network, when massive concurrent optimal path queries occur, the timeliness of the 
query results is also a big challenge. 
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 Dynamic route update. The vehicle’s travel time on the road segment will vary by the 
time it travels through. To obtain the more accurate results, the time weight of edges of 
the built graph, which represents the condition of the road segments, should be 
updated in time.  

We have the following assumptions in smart camera network G: (1) every camera as a 
vertex can communicate with its neighbors. (2) the message transmission time between 
cameras could be ignored comparing to the camera network routing delay time which 
indicates the vehicle travelling time through the road segment with cameras mounted. (3) the 
vehicles could be detected and uniquely identified by the camera using computer vision 
technology. Thus, the vehicle should be in one of the following two states: the vehicle is in the 
field of view of one camera vi or the vehicle is on the road segment indicated by edge <vi,vj>, 
vi and vj are adjacent cameras. 

We describe the optimal path generation problem as follow: when giving a pair of 

vertexes '
s d

v ,v V , try to find a path with a lowest sum of time weight from vs to vd currently. 

The overview of path finding in a road network with smart cameras could be illustrated by 
the application scenario shown in Fig. 1 When one vehicle made a path query request for the 
optimal path to a specific destination location (one road intersection or nearby) under the 
current road traffic condition, all cameras in the camera network will collaborate with each 
other to get the result. During the process of path querying, all cameras starting from the 
source location will broadcast a message which is just like dispatching a vehicle driving along 
the road. With the distributed smart camera network, concurrent attempts of different paths are 
made with the objective to find the optimal path. 

3. A distributed optimal path generation algorithm 

3.1 Real-time traffic flow modeling based on smart camera network 

In road network with smart cameras, cameras are always monitoring vehicles passing by. 
When a camera detects a moving vehicle, it will transmit the vehicle’s feature information to 
its neighboring cameras. The neighboring camera could identify the vehicles using the feature 
information it receives. Therefore, the vehicle’s travel time between the two adjacent road 
intersections could be evaluated by the time difference of its presence in the neighboring smart 
cameras mounted on the respective adjacent road intersections. This is feasible under the 
assumption that smart camera can detect and identify vehicles. Thus, we can estimate and 
predict the average travel time between two adjacent road intersections by collecting the travel 
time of a certain amount of vehicles passing along this road segment.  

Iterative learning control (ILC)[18] has been successfully applied to traffic flow estimation 
for a macroscopic freeway environment. However, due to the absence of the vehicle’s travel 
time, traffic parameters such as traffic density, space mean speed, the length of road segments 
and sample time intervals have to be considered to get the traffic flow leaving and entering the 
road intersection with iterative learning[19]. These parameters are essential to get the travel 
time between the two adjacent road intersections more accurately. With the assumption that a 
vehicle’s feature could be obtained by the smart cameras and that feature could be transmitted 
to the neighboring cameras. The neighboring cameras can get the travel time by capturing the 
same vehicle. The average travel time can be obtained through amounts of the vehicle’s travel 
time. In this means, we could simplify the iterative learning control approach to iteratively 
learn the average travel time between two adjacent road intersections by cameras’ capturing of 
passing vehicles. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016                                        3105 

Assume the average travel time previously is Told and the average travel time calculated by 
the smart cameras in the current minute is Tnew. The current average travel time Tcur can be 
learned by Tnew and Told as in equation (1). 

cur old new(1 )T T T   
                                    (1) 

Where   is a constant coefficient, (0,1)   

The iterative learning process is as follow steps: 

(1) Told is initialized to zero; 
(2) Obtain the Tnew from the smart camera network; 
(3) get Tcur by equation (1); 
(4) set Told = Tcur; 
(5) at next minute, repeat steps (2)-(4); 
Thus the vehicle’s travel time on road segments could be obtained by the above iterative 

learning at a certain interval i.e. one minute. 

3.2 Routing Delay Time vs Vehicle Travel Time 

Suppose the vehicle travel time from road intersection A to road intersection B under the 
current traffic condition is T minutes, then we can have t milliseconds from smart camera CA to 
wait before it broadcasts the message to smart camera CB. In order to ensure that the shortest 
routing on the smart camera network can be used to represent the shortest driving-time path on 
the road network, we have the routing delay time t (in milliseconds) be linear to the vehicle 
travel time T (in minutes) as define in equation (2)[20].  

t k T                                          (2) 

 Where k is transforming coefficient. 

 We need this time transformation due to the following observations: 

 Routing delay is directly proportional to driving time. This means that the original 
road network with weight of road segments could be transformed into an isomorphic 
network with weights scaling down. Thus the shortest routing path on the smart 
camera network would be the shortest path on the original road network. 

 The time for one camera to broadcast a message to its neighboring cameras is very 
short and almost the same (i.e. 0.2ms). However, in the real road network, the time for 
vehicle to travel to different adjacent road intersection varies because the length of the 
adjacent road segments are different and traffic condition are always changing over 
time. Thus, in order to fulfill the transformation from optimal path in road network to 
shortest networking routing in smart camera network, delay is needed before the 
broadcast of every routing message to indicate the traffic condition on the real road. 
This delay time for routing is determined by the vehicle travel time between the 
adjacent road intersections under its current traffic condition. 

  The delay time is selected varying from 10ms to 1000ms so as to avoid the interference of 
data processing with message broadcasting. The value of k in equation (2) is important in 
affecting the accuracy and real-time performance of the shortest path query. A smaller value of 
k will lead the message broadcast delay time be close to the message transmission delay 
between camera nodes, which will cause inaccurate result. A bigger value of k will have longer 
waiting time before message broadcasting, which would result in a longer query time. In this 
paper, our experiments show that a value of 10 is suitable for k to get a good performance on 
both accuracy and efficiency. 
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3.3 The distributed path finding algorithm based on delayed routing 

When delay time is introduced in the smart camera network, the roads’ condition or the travel 

time on a road segment is represented by the transmission delay between cameras on adjacent 
road intersections, which associates the distributed camera network with the real dynamic road 
network.  

 After building the weighted directed graph of the smart camera network, every smart 
camera node will maintain neighbor table and query message table to guarantee forwarding 
messages in a right way. The structure definition of the tables and format of query packet and 
response packet is in Table 1. 

 The neighbor tables are mainly to maintain the transmission delay of adjacent nodes which 
represent the weight of edge in graph. The query message tables record the passing packets, 
and drop the repeated packets by their unique identifier (i.e. GUID), that can be helpful to 
reduce the numbers of redundancy packets. Furthermore, the query message tables also 
guarantee the correctly backtrack from destination node and record the optimal path. For 
example, Transmission delay information of camera A is shown in Table 2 for the smart 
camera network in Fig. 2.  

Table 1. Structure definition  and Packet format 
Name Definition 

query packet <Type,GUID, DstID, SrcID, StartTime> 

response packet <Type,GUID,DstID,SrcID,Path,startTime> 

query message table <GUID, LastID, Cost> 

updating packet <Type, Start, End, NewCost> 

neighbor table <NeighborID, Cost> 

route table <DstID, LastID, Cost> 

Type packet’s type 

GUID packet’s ID, globally unique 

DstID destination node’s ID 

SrcID source node’s ID 

LastID last hop node’s ID 

NeighborID neighbor node’s ID 

StartTime query start timestamp 

Path the passing route of packet 

Cost the weight of road segment 

 

In the real application, the branch of a road intersection will always vary from 3 to 6. Thus, 
the number of neighboring cameras normally differs from 3 to 6 and a linear list can be used to 
organize this neighbor table for query and update. 

Table 2. the neighbor table of Camera node A 
Neighboring camera ID Transmission delay 

D 36ms 

B 20ms 

… …. 
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As in Fig. 2, when camera A receives a path query request to the location where camera S 
mounted. It will generate a query packet and send it to its neighbors B, D with their delay time. 
When the intermediate cameras receive the query packet, they will also transmit it to their 
neighbors with their own delay time. For example, camera B will send this message to camera 
C and E with a delay time of 19ms and 32ms respectively. So the query packets transmit in the 
road network act like vehicles driving on the road network. Eventually, the destination camera 
S may receive more than one query packet. But only the first arriving one contains the optimal 
path. Camera S will generate a response packet with the optimal path and send back to the 
source camera A. The detailed query and response process will be described in Section 3.4. 

 

Fig. 2. The smart camera network with transmission delay 

3.4 Path routing caching 

For every path query request, the cameras should always do the querying and computing to get 
the result. Massive and concurrent query request would cause redundant message broadcasting 
and computations in a large scale dynamic environment. Thus, we introduce the idea of route 
table in the computer network to the path finding algorithm.  

 We find that it is possible to get the shortest-path-tree[21]. In this shortest-path-tree, the 
path between arbitrary parent node and child node is the shortest path, and the path between 
arbitrary child node and parent node is also the shortest path. So we could combine the 
well-known routing mechanism of computer network with the distributed path query 
algorithm. Every camera in the road network will maintain an extra route table which stores 
the shortest-path-tree. And an updating packet is also defined aiming to adapt to the dynamic 
road network.  

 Each smart camera would maintain a route table and a neighbor table. For every query 
request, the camera node will check if the local route table has already had the result to the 
requested destination; if not, it will start the delay routing algorithm to find the optimal path. 
During this process, each node related to the query will check their route tables to reduce the 
query time. When the destination node send back a response message, the node receiving the 
message will also store and update the optimal path tree in the passing nodes, which reduces 
repeated computations. To keep the road network dynamic and get the latest query result, the 
nodes will start the route update algorithm to refresh nearby nodes’ route table after the weight 
of some road segment changes beyond a certain threshold to reflect the latest real-time road 
traffic condition. 

 A route table is a collection of triples: <DstID, LastID, Cost>. Updating packet has the 
format as <Type, Start, End, NewCost>, where Start means the source of changed road 
segment and End means the destination, the NewCost means the new weight indicating the 
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new traffic condition on that road segment.. 

 Route table as defined can cache several shortest-path-tree with itself as the parent node. 
For example, in the distributed camera network shows in Fig. 3, camera node S will maintain a 
neighbor table as the Table. 3. When the vehicle request for the path from S to T, we can get 
the path of first packet arriving at T is S-C-F-E-T. After this query, we can get node C’s query 
message table like Table 4 and route table like Table 5. 

 

Fig. 3. A distributed camera network 

Table 3. Node S’s neighbor table 

Node ID Delay/ms 

A 20 

B 50 

C 10 

 

Table 4. Node C’s query message table 

GUID Last hop node Delay/ms 

123456 S 10 

 

Table 5. Node C’s route table 

Destination Node Last hop node Delay/ms 

F C 15 

E F 24 

T E 17 
 

The process of the distributed path query based on delay routing and caching is shown in 

Algorithm 1 for source node and Fig. 4 for neighbor node. 

Algorithm 1 SourceNode Receive 

Input: P, the received packet; RT, router table 

Output: path, the optimal path 

1: if  p is RequestPacket then 

2:       if RT[p[dstid]] not null then 

3:        return getPath(p)  // get the optimal path from route table 

4:       else // route table does not contain any related path 

5:        send p to neighboring nodes 

6: else  // p is ResponsePacket 

7:       receiveReplies(p)  // receive ResponsePackets and deal with them 
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Fig. 4. The query process of neighbor node 

When a path query request is sent to a node in the distributed camera network,  

(1) The source node will first check if the shortest-path-tree to the destination is contained 
in its route table. If it exists, which indicates this path have be queried before and already be 
cached in its route table, the path in the shortest-path-tree would be returned as the optimal 
path. Otherwise, it will broadcast this query request to its neighbors in terms of its neighbor 
table. For example, as the road network shows in Fig. 3, if the node S receive a query request 
to destination T and also there is no cache to the destination in its route table, it will generate a 
query packet. With its neighbor table, it will send this query packet to node C after a delay time 
of 10ms, and 20ms to A, and 50ms to B respectively. 

(2) When the neighbor node receives a packet, it will first examine the type of this packet. 
If it is a query packet, it will check the query message table. If there is a record with the same 
GUID in the query message table, this packet will be dropped. The same GUID means that this 
packet have arrived before and no long needs to be processed, which would eliminate the 
chance for the repeated packet sending. If the destination of this packet is just the node itself, 
the node will generate a response packet and send back through its previous passing nodes. If 
not, it will finally check its route table to find if there is a record to the destination. If no record 
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for this query exists, it will start broadcasting to its neighbors. If the packet is a response 
packet, the node obtains shortest-path-tree from the path field of this packet and stores it in its 
route table, then sends back the response packet towards the source node.  

(3) Finally, the source node will have three situations to deal with before getting the exact 
result due to the caching mechanism. The first one is finding the shortest-path-tree in its local 
route table directly. The second one is that the source node receives several response packets, 
which includes a path part from real-time query and another part from the route table, or a path 
that totally from the real-time query. The third one is the mixture of real-time query path and 
the shortest-path-tree from route table.  

To handle the last two situations, Algorithm 2 is presented in pseudo code. After the 
source node receives the response packets, it calculates each packet’s total time weight T by its 
returned optimal path. Then each packet’s query time R will be obtained by its StartTime field 
and the received time. We need to compare T and R to determine which packet contains the 
optimal path. If T > R, it means the response packet’s optimal path contains cached path and 
query path. So the node will start a thread to wait a period time of T-R and then return its path 
as the optimal path. During this period, any packets arrive to this node would also do that 
comparison and wait.  Finally, all threads will be stopped, any other arrived packets will be 
dropped and the optimal path will be obtained either from a path with cached path or a 
newly-got query path. 

Algorithm 2 Receive Replies 

Input: p, the received packet 

Output: path, the optimal path 

1: if this[id] == p[dstid] then  

2:       finalPath ← getPath(p) // get optimal path from route table 

3:       insertCache(finalPath) // insert the short-path-tree into route table 

4:       T ← getPathTime(p) // get the total time weight from the a returned path 

5:       R ← NOW - p[startTime] // get the query time 

6:       if T > R then // response packet’s optimal path contains cached path and query path 

7:  schedule(T- R) // produce a timer to take a wait  

8:      else 

9： schedule(0) // directly get the path as the optimal path 

10: else 

11:     sendBack(p) // send the response packet to next processing node 
 

This algorithm ensures the accuracy of the query results, and the query time will be no 

more than a totally non-cached path query time with the caching mechanism. The best 

situation is getting the result from local route table directly. When there are lots of query 

request, the shortest-path-tree cached in the node will increase which will improve the cache 

hit ratio. This algorithm is much more efficient in the large-scale network with concurrent 

requests. 

3.5 Route updating 

In the dynamic road network, the time weight of the edges represents the traffic condition of a 

road segment which is inherently changing over time. Thus, the router table of camera nodes 

must update in time to guarantee that vehicles can get the latest and more accurate query result. 

The route table of the camera nodes will be updated after the weight of some road traffic 

condition changed beyond a certain threshold. For example, as the road segment SC shown in 

Fig. 3. If it is the one-way road from S to C and when the weight of road SC changes beyond 
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the threshold, the node S will broadcast the update packet to the nearby nodes within a certain 

range. The node receives the packet will check its route table. If it contains the S-C (from S to 

C) subtree, then update its Cost field. Otherwise, the packet is dropped. If the road segment SC 

is a two-way road, the node S sends the broadcast packet to update S-C subtree, and the node C 

will send broadcast packet to update C-S subtree. 

The pseudo code of the route update algorithm is in Algorithm 3: 

Algorithm 3 Update Route 

Input: p, start, end, delay 

1: if  --TTL > 0 and  end ∈ routeTable  and  routeTable[end] == start then  

2:  changeDelay(start,end) // update the route table when the weight changed beyond threshold 

3:  p ← createBroad(start,end,delay) // create a broadcast packet to update the neighbors’ route tables 

4:  broadCast(p) 

 

3.6 The limit of broadcast area by elliptical model 

The above path query algorithm has reduced the redundant query and the broadcast packets in 

the network through the cache on route table. However, every query will cause the neighbors 

broadcast their packets without any limitation, which still produces tremendous redundant 

packets in the network and influences the camera nodes’ work efficiency. Actually, the 

optimal path is normally always around the straight line path from the source to the destination 

and the camera nodes in the real road network distribute uniformly. Thus, we can use the 

elliptical model [22][23] to limit the message broadcasting in a certain area. 

 In the distributed smart camera network, we store the longitude and latitude of the 

camera’s location in every node to determine its location. When the node S start a query 

request to node T in the network shown in Fig. 3.The node S will get the coordinate of 

destination node, and then build an ellipse like in Fig. 5 by considering S and T as the focuses 

of the ellipse and a coefficient of their straight distance as the major axis.   

 

                 Fig. 5. The elliptical area                        Fig. 6. The result of intermediate calculating  

       about the elliptical coefficient 

We get the proportional coefficient between major axis and minor axis by statistical 

analysis. The main process is as follows: Taking Beijing’s city map as an example, we 

randomly selected 2000 pairs of source and destination nodes. Then we calculated the 
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straight-line distance between the node pairs and the longest distance of the sum of every 

optimal path’s passing nodes to the source and destination node’s distance. The Fig. 6 shows 

the result of our test. As the node pairs’ straight-line distance increases, distance related to the 

elliptical coefficient also raise steadily. We can find the points in the figure almost cluster in a 

straight line, which means a city's elliptical model can nearly be built only by the elliptical 

coefficients. Then the Linear Least Squares is used to fit a line and the slope of the line is 

considered as the elliptical coefficient. 

With the elliptical model, the node needs to check if the target node is in the elliptical area. 

If not, it would ignore this broadcast message, which can reduce many redundant packets in 

the network and improves the efficiency of nodes further more. 

4. Simulation and Result Analysis 

We test the performance of this algorithm with large-scale concurrent requests. We do the 

simulation on the NS2 [24] with part of the road network of Beijing containing about 1283 

intersections and 1631 road segments. We define the weight of road segment by a function of 

the road’s distance and a random traffic condition. And we did the following test: 

 In the situation of large-scale concurrent requests, comparing the cumulative query 

time and the total numbers of sending packets of the algorithm with and without 

caching mechanism. 

 Changing the weight of a road segment beyond the threshold, and comparing the 

result before and after the route updating. 

 Observer the effect after applying the elliptical model, reducing the number of nodes 

taking part in query broadcasting in the network. 

To make the nodes generate much more caches in a short time, we choose the node pairs 

of same source node and random destination nodes. Then we start a large numbers of requests 

in 10s and record the cumulative query time and broadcast packets. Finally, we get the result 

shown in Fig. 7 and Fig. 8.  

 

        Fig. 7. Cumulative broadcast packets                        Fig. 8. Cumulative query time 

We find that with the increasing number of requests from 50 pairs to 2000 pairs, both the 

cumulative broadcast packets and query time of the algorithm with caching mechanism 

increase more slowly and performs more stable than that of the algorithm without caching 

mechanism. In the beginning, before the query requests increase to 500, the two approaches 

have almost the same result. With the query requests increasing, the cached approach keeps 
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increasing slowly. However, the none-cached approach need nearly 1.5 sec for per query 

request at last which is three time longer than that of cached approach in query time. This is 

because the large numbers of requests make the nodes’ route tables caching more and more 

shortest-path-tree and reducing the repeated queries. It is observed that if there is little queries 

in the road network, the cache in the nodes’ route tables will decrease, and the algorithm’s 

efficiency will be limited. 

In the second test, we test the route updating algorithm. We firstly get the optimal path by 

the path query algorithm. Then we change one of the road segments’ weight beyond the 

threshold, which may simulate a traffic accident. After that, starting the path query again to get 

the newest optimal path. The result is shown in Fig. 9. At first, the path A-B-C-G from S to T 

is the optimal path in that map. When the road segment’s weight is dynamically changed 

beyond the threshold as 20ms(in this experiment), in Fig.10 we manually change the weight of 

road segment A to 50ms, that increase 27ms which beyond the threshold we set up before. 

Then the route update algorithm will be activated. It sends the broadcast packet with updated 

message to the nodes within a certain range. And the nodes that receive the updated packet will 

check their route table and updated the changed cache. So after changing road segment A’s 

weight, the weight of A+B+C is bigger than the weight of D+E+F. The result is shown in Fig. 

10. The line in red represents the optimal path. When some road segments’ weight change 

frequently, the route update algorithm might become practically inefficient. 

           

         

        Fig. 9. The optimal path before updating                 Fig. 10.  The optimal path after updating 

  

In the third test, we compare the number of broadcast nodes with and without elliptical limit. 

We choose 10 pairs of nodes in the Beijing road network. With the increasing distance 

between the nodes, the numbers of nodes that the query packets have passed in using elliptical 

model and without elliptical model are in Fig. 11. After increasing the distance between 

source and destination from nearly 10000 to 90000 meters, the elliptical model’s limitation 

controls the query packets in a very steady numbers compared to the none-limit situation 

which increases rapidly and almost eight times than using an elliptical limit at the last query 

pairs. Using the elliptical model effectively limits the area of nodes’ broadcasting and much 

more redundant packets will be dropped before broadcasting.  
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Fig. 11. The message broadcasting numbers comparison 

Finally, we take abundant query requests between the nodes either nearby or far away in 

the city of Beijing’s road network into test. We found each query request between nodes 

involves a certain range of the road network which only affected by the distance between the 

nodes. Moreover, after applying the caching mechanism and elliptical limit, every query only 

produces thousands of packets in the network which also contain TTL field to drop themselves. 

So we consider the proposed algorithm feasible when applied in practice. 

5. Conclusion 

In this paper, we proposed the distributed path query algorithm based on delay routing. We use 
caching mechanism to reduce the redundant queries in the large-scale concurrent requests 
situation. During the query process, the nodes cache the shortest-path-tree extracting from the 
response packets in their route tables. Furthermore, when one of the road segment’s weight 
beyond the threshold, the node will start the route updating algorithm to refresh the route table 
of the node within a certain range, which guarantees that the query result can be more optimal 
and accurate. Besides, we apply the elliptical model in this algorithm to reduce the numbers of 
nodes that the query packets have passed along. Eventually, the simulation result shows that 
this algorithm can effectively reduce the query time and the numbers of broadcast packets. 
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