• Title/Summary/Keyword: dynamic motion

Search Result 3,570, Processing Time 0.028 seconds

Extended Septal Myectomy for Hypertrophic Obstructive Cardiomyopathy -Report of a case- (비후형 심근증 환아에서 시행한 광범위 중격절제술 - 1예 보고 -)

  • Lee Jae-Hang;Kwak Jae-Gun;Jung Eui-Suk;Oh Se-Jin;Chang Myoung-Woo;Kim Woong-Han
    • Journal of Chest Surgery
    • /
    • v.39 no.10 s.267
    • /
    • pp.775-778
    • /
    • 2006
  • Hypertrophic cardiomyopathy is characterized by inappropriate hypertrophy of the myocardium and is associated with various clinical presentations ranging from complete absence of symptoms to sudden, unexpected death. These are caused by dynamic obstruction of the left ventricular outflow tract and surgical approaches were initiated. But, the complete resection of hypertrophied midventricular septum is impossible by standard, transaortic approach, because of narrow vision and limited approach. And it leads to inadequate excision, will leave residual left ventricular out-flow tract obstruction or systolic anterior motion of mitral leaflet, and limit symptomatic improvement and patient's survival. We report a case of extended septal myectomy for hypertrophic cardiomyopathy of mid-septum in a child. The extended septal myectomy was performed by aortotomy and left ventricular apical incision, and made possible the complete resection of mid-ventricular septum, abnormal papillary muscles and chordae. The patient's symptom was improved and the postoperative course was uneventful.

A Study on Field Applicability of Underground Electric Heating Mesh (매설용 전기 발열 매시의 융설 효과에 대한 현장 적용성 연구)

  • Suh, Young-Chan;Seo, Byung-Seok;Song, Jung-Kon;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.19-27
    • /
    • 2013
  • PURPOSES : This study aims to investigate the snow-melt effects of an underground electric heater's snow-melt system via a field performance test, for evaluating the suitability of the system for use on a concrete pavement. The study also investigates the effectiveness of dynamic measures for clearing snow after snowfall events. METHODS : In order to check the field applicability, in November 2010, specimens were prepared from materials used for constructing concrete pavements, and underground electric heating meshes (HOT-mesh) were buried at depths of 50 mm and 100 mm at the site of the Incheon International Airport Construction Research Institute. Further, an automatic heating control system, including a motion sensor and pavement-temperature-controlled sensor, were installed at the site; the former sensor was intended for determining snow-melt effects of the heating control system for different snowfall intensities. Pavement snow-melt effects on snowy days from December 2010 to January 2011 were examined by managing the electric heating meshes and the heating control system. In addition, data on pavement temperature changes resulting from the use of the heating meshes and heating control system and on the dependence of the correlation between the outdoor air temperature and the time taken for the required temperature rise on the depth of the heating meshes were collected and analyzed. RESULTS : The effects of the heating control system's preheat temperature and the hot meshes buried at depths of 50 mm and 100 mm on the melting of snow for snowfalls of different intensities have been verified. From the study of the time taken for the specimen's surface temperature to increase from the preheat temperature ($0^{\circ}C$) to the reference temperature ($5{\sim}8^{\circ}C$) for different snowfall intensities, the correlation between the burial depth and outdoor air temperature has been determined to be as follows: Time=15.10+1.141Depth-6.465Temp CONCLUSIONS : The following measures are suggested. For the effective use of the electric heating mesh, it should be located under a slab it may be put to practical use by positioning it under a slab. From the management aspect, the heating control system should be adjusted according to weather conditions, that is, the snowfall intensity.

Sliding Wear Properties of Graphite as Sealing Materials for Cut off Hot Gas (고온차단 기밀용 그라파이트의 고온 미끄럼마모 특성 평가)

  • Kim, YeonWook;Kim, JaeHoon;Yang, HoYeong;Park, SungHan;Lee, HwanKyu;Kim, BumKeun;Lee, SeungBum;Kwak, JaeSu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1349-1354
    • /
    • 2013
  • Sealing structure to prevent flowing hot gas into the driving device, located between the driving shaft and the liner of On-Off valve for controlling the hot gas flow path was studied. Wear occurs due to the constant movement of the driving shaft controlled by actuator on graphite as the sealing material. In this paper, the dynamic wear behavior in high temperature of graphite(HK-6) to be used as sealing material was evaluated. Reciprocating wear test was carried out for the graphite(HK-6) to the relative motion between shaft materials(W-25Re). The results of friction coefficient and specific wear rate according to contact load, sliding speed at room temperature and $485^{\circ}C$ considering the actual operating environment were evaluated. Through the SEM analysis of the worn surface, third body as lubricant films were observed and lubricant effect of third body was considered.

The Geodynamic Evolution of the Chugaryeong Fault Valley in a View Point of Paleomagnetism (고지자기학적 관점에서 본 추가령단층곡의 생성과 진화)

  • 이윤수;민경덕;황재하
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.555-571
    • /
    • 2001
  • The dynamic evolution of the Chugaryeong fault valley is studied by paleomagnetic works on 163 samples at 16 sites from Late Cretaceous and Quaternary volcanic rocks in the valley. Conglomerate test and stepwised thermal/alternating field demagnetization indicate that all the characteristic directions are of primary origin. Paleomagnetic pole ponsition(216.8$^{\circ}$E/7l .6$^{\circ}$N; dp=7.1$^{\circ}$, dm=10.0$^{\circ}$) for the upper par of the Jijangbong Volcanic Complex Is indistinguishable from the coeval retference pole position from the Gyeongsang Basin, which further substanciates the reliability of the Paleomagnetic data. This indicates the study area has not undergone any tectonic rotation since Late Cretaceous by uy significant reactivation of the Chugaryeong fault valley. The Quaternary pole position (134.2$^{\circ}$E/86.5$^{\circ}$N; $A_{95}$=7.1 $^{\circ}$) from the Jeongog Basalt reflects the present geocentric axial dipole field for the area, supporting the above conclusion. Unlike the upper part, paleomasnelic directions of the lower part of the Jijangbong Volcanic Complex show random distrinution between sites. We interpret that the early stage of the volcanic activity was created by sinistral strike slip motion of the Chugaryeong fault during early Late Cretaceous. The creation and evolution of the Chugaryeong fault valley emphasize the significance of the kinematic FR (folding ruler) model in east Asia.

  • PDF

Seismic Fragility Analysis by Key Components of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 주요 부재 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Kwon, Yong-Min;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.26-37
    • /
    • 2020
  • This study intends to present a fragility analysis method suitable for concrete cable-stayed bridges by performing an analysis reflecting design criteria and material characteristics from the results of inelastic time-history analysis. In order to obtain the fragility curve of the cable-stayed bridge, the limit state of the main component of the cable-stayed bridge is determined, and the damage state is classified by comparing it with the response value based on inelastic time history analysis. The seismic fragility curve of the cable-stayed bridge was made by obtaining the probability of damage to PGA that the dynamic response of the vulnerable parts to input ground motion would exceed the limit state of each structural member. According to the pylon's fragility curve, the probability of moderate damage at 0.5g is 32% for the longitudinal direction, while 7% for the transversal direction, indicating that the probability of damage in the longitudinal direction is higher in the same PGA than in the transversal direction. The seismic fragility curve of the connections showed a very high probability of damage, meaning that damage to the connections caused by earthquakes is very sensitive compared to damage to the pylon and cables. The cable's seismic fragility curve also showed that the probability of complete damage state after moderate damage state gradually decreased, resulting in less than 30% probability of complete damage at 2.0g.

Reliability of Nonlinear Direct Spectrum Method with Mixed Building Structures (복합구조물에 대한 비선형 직접스펙트럼법의 신뢰성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.75-84
    • /
    • 2003
  • Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. Seismic evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. Among them, the capacity spectrum method(CSM) is conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper considers a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of mixed building structures without iterative computations, given dynamic property T from stiffness skeleton curve and nonlinear pseudo acceleration $A_{y}$/g and/or ductility ratio $\mu$ from response spectrum. The nonlinear response history analysis has been performed and analyzed with various earthquakes for estimation of reliability and practicality of NDSM with mixed building structures.

A Content-based Video Rate-control Algorithm Interfaced to Human-eye (인간과 결합한 내용기반 동영상 율제어)

  • 황재정;진경식;황치규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.307-314
    • /
    • 2003
  • In the general multiple video object coder, more interested objects such as speaker or moving object is consistently coded with higher priority. Since the priority of each object may not be fixed in the whole sequence and be variable on frame basis, it must be adjusted in a frame. In this paper, we analyze the independent rate control algorithm and global algorithm that the QP value is controled by the static parameters, object importance or priority, target PSNR, weighted distortion. The priority among static parameters is analyzed and adjusted into dynamic parameters according to the visual interests or importance obtained by camera interface. Target PSNR and weighted distortion are proportionally derived by using magnitude, motion, and distortion. We apply those parameters for the weighted distortion control and the priority-based control resulting in the efficient bit-rate distribution. As results of this paper, we achieved that fewer bits are allocated for video objects which has less importance and more bits for those which has higher visual importance. The duration of stability in the visual quality is reduced to less than 15 frames of the coded sequence. In the aspect of PSNR, the proposed scheme shows higher quality of more than 2d13 against the conventional schemes. Thus the coding scheme interfaced to human- eye proves an efficient video coder dealing with the multiple number of video objects.

Dynamics of Rouleaux Patterns of Red Blood Cells under Pulse Magnetic Field (강한 펄스자기장 자극에 의한 적혈구 연전현상의 활동성 조사)

  • Hwang, Do Guwn
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • It is widely known that pulsed magnetic field (PMF) is very useful tool to manipulate chemical and physiological processes in human body. The purpose of our study is to observe dynamics of rouleaux patterns of red blood cells (RBC) under PMF. The aggregation of RBCs or rouleaux formation is caused by fibrinogen in blood plasma. The maximum magnetic field intensity is 0.27 T and pulse time of 0.102 msec and pulse repetition rate was 1 Hz. PMF stimulus was applied to the palm of left hand for 5, 10, 15 and 20 min. Live blood analysis was used in vitro in order to quantitatively estimate the velocity of RBC exposed to PMF stimulus. The velocity of stacked-RBC of 10 minute PMF stimulus was increased up to $8{\times}10^{-4}m/sec$, but it decreased rapidly as the time passed. The results of present study have adduced that PMF stimulus on hand provide the improvement of RBC rouleaux formation, increase of RBC's moving velocity as well as low blood viscosity.

A Study on Creep Effect of Synthetic Fiber Rope Mooring System on Motion Response of Vessel and Tension of Mooring Line (섬유로프 계류시스템의 크리프 효과가 부유체의 운동응답 및 계류선의 장력 변화에 미치는 영향에 관한 연구)

  • Park, Sung Min;Lee, Seung Jae;Kang, Soo Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.151-160
    • /
    • 2017
  • Growing demand and rapid development of the synthetic fiber rope in mooring system have taken place since it has been used in deep water platform lately. Unlike a chain mooring, synthetic fiber rope composed of lightweight materials such as Polyester(polyethylene terephthalate), HMPE(high modulus polyethylene) and Aramid(aromatic polyamide). Non-linear stiffness and another failure mode are distinct characteristics of synthetic fiber rope when compared to mooring chain. When these ropes are exposed to environmental load for a long time, the length of rope will be increased permanently. This is called 'the creep phenomenon'. Due to the phenomenon, The initial characteristics of mooring systems would be changed because the length and stiffness of the rope have been changed as time goes on. The changed characteristics of fiber rope cause different mooring tension and vessel offset compared to the initial design condition. Commercial mooring analysis software that widely used in industries is unable to take into account this phenomenon automatically. Even though the American Petroleum Institute (API) or other classification rules present some standard or criteria with respect to length and stiffness of a mooring line, simulation guide considers the mechanical properties that is not mentioned in such rules. In this paper, the effect of creep phenomenon in the fiber rope mooring system under specific environment condition is investigated. Desiged mooring system for a Mobile Offshore Drilling Unit(MODU) with HMPE rope which has the highest creep is analyzed in a time domain in order to investigate the effects creep phenomenon to vessel offset and mooring tension. We have developed a new procedure to an analysis of mooring system reflecting the creep phenomenon and it is validated through a time domain simulation using non-linear mooring analysis software, OrcaFlex. The result shows that the creep phenomenon should be considered in analysis procedure because it affects the length and stiffness of synthetic fiber rope in case of high water temperature and permanent mooring system.

Horizontal Behavior Characteristics of Umbrella-Type Micropile Applied in Sandy Soil Subjected to Seismic Motion (사질토 지반에 설치된 우산형 마이크로파일의 지진 시 수평거동 특성)

  • Kim, Soo-Bong;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.5-16
    • /
    • 2020
  • Currently, the seismic design standards have been strengthened due to the occurrence of the Gyeongju and Pohang earthquake, and seismic performance evaluation of existing facilities is being conducted. It aims to secure a seismic performance effect during earthquakes by improving the micro-pile method, which can be constructed in limited confined places while minimizing damage to existing facilities. The improvement method is to construct all the piles in the square-tray-type plate on the top of the pile by constructing the slope pile in the form of an umbrella around the vertical pile, the main pillar. In this paper, the numerical analysis was performed to analyze the horizontal displacement behavior of an umbrella-type micropile for various real-measurement seismic waves in sandy soil. As a result of numerical analysis, the softer the ground, the better the effect of horizontal resistance of umbrella-type micropile. The horizontal displacement reduction effect was pronounced when the embedded depth was 15 m or more at the same ground strength, and it was found to be effective in earthquakes if it was settled on the ground with an N value of 30 or more. The embedded depth and horizontal displacement suppression effect of the micropile was proportional. Generally, the weaker the ground, the greater the displacement suppression effect. Umbrella-type micropile had a composite resistance effect in which the vertical pile resists the moment and inclined pile resists the axial force.