DOI QR코드

DOI QR Code

2주탑 콘크리트 사장교의 주요 부재 지진 취약도 분석

Seismic Fragility Analysis by Key Components of a Two-pylon Concrete Cable-stayed Bridge

  • 투고 : 2020.06.22
  • 심사 : 2020.07.23
  • 발행 : 2020.08.30

초록

본 연구에서는 2주탑 콘크리트 사장교를 모델링하고 취약부재에 대한 비탄성 시간이력해석 결과들로부터 설계기준과 재료특성을 반영한 취약도 분석을 수행하여 콘크리트 사장교에 적합한 취약도 분석을 제시하고자 한다. 사장교의 지진 취약도 곡선을 작성하기 위해 사장교의 주요 취약부재에 대한 한계상태를 결정하고 비탄성 시간이력해석에 의한 응답값과 비교하여 손상상태를 구분한다. 입력지반운동에 대한 취약부위들의 동적응답이 각 구조부재의 한계상태를 초과할 손상확률을 최대지반가속도(PGA)에 대해 구함으로써 사장교의 지진 취약도 곡선을 작성하였다. 주탑의 취약도 곡선에 의하면 0.5g에서 보통손상상태의 확률이 교축방향의 경우 32%인데 반해 교축직각방향의 경우 7%로 나타나 동일 PGA에서 교축직각방향에 비해 교축방향의 손상확률이 더 높은 것으로 나타났다. 연결부의 지진 취약도 곡선을 보면 심한 손상상태의 손상확률이 다른 부재에 비해 매우 높은 수준을 보였는데 이는 지진에 의한 연결부의 손상이 주탑과 케이블의 손상에 비해 매우 민감하다는 것을 의미한다. 케이블의 지진 취약도 곡선에서는 보통손상상태 등급 이후의 손상확률이 점차 낮아져 완전손상상태에 이를 확률은 2.0g의 큰 지진에서도 30%미만의 확률을 가지는 것으로 나타났다.

This study intends to present a fragility analysis method suitable for concrete cable-stayed bridges by performing an analysis reflecting design criteria and material characteristics from the results of inelastic time-history analysis. In order to obtain the fragility curve of the cable-stayed bridge, the limit state of the main component of the cable-stayed bridge is determined, and the damage state is classified by comparing it with the response value based on inelastic time history analysis. The seismic fragility curve of the cable-stayed bridge was made by obtaining the probability of damage to PGA that the dynamic response of the vulnerable parts to input ground motion would exceed the limit state of each structural member. According to the pylon's fragility curve, the probability of moderate damage at 0.5g is 32% for the longitudinal direction, while 7% for the transversal direction, indicating that the probability of damage in the longitudinal direction is higher in the same PGA than in the transversal direction. The seismic fragility curve of the connections showed a very high probability of damage, meaning that damage to the connections caused by earthquakes is very sensitive compared to damage to the pylon and cables. The cable's seismic fragility curve also showed that the probability of complete damage state after moderate damage state gradually decreased, resulting in less than 30% probability of complete damage at 2.0g.

키워드

참고문헌

  1. Avsar, O., Yakut, A., and Caner, A. (2011). Analytical fragility curves for ordinary highway bridges in Turkey. Earthquake Spectra, 27(4), 971-996. https://doi.org/10.1193/1.3651349
  2. Baker, J. W. (2015), Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis, Journal of Earthquake Spectra, 31(1), 579-599. https://doi.org/10.1193/021113EQS025M
  3. Barbat, A. H., Pujades, L. G., and Lantada, N. (2008), Seismic damage evaluation in urban areas using the capacity spectrum method, Soil Dynamics and Earthquake Engineering, 28(10-11), 851-865. https://doi.org/10.1016/j.soildyn.2007.10.006
  4. Chao. L, Li, H. N., Hao, H., Bi, K., Chen, B., (2018), Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites, Engineering Structures, 165, 441-456 https://doi.org/10.1016/j.engstruct.2018.03.066
  5. Chung, Y. S., Park, C. Y., Park, J. H. (2007), Seismic Fragility Analysis of RC Bridge Piers in terms of Seismic Ductility, Journal of the Korea Concrete Institute, KCI, 19(1), 91-102. https://doi.org/10.4334/JKCI.2007.19.1.091
  6. Guo, J., Zhong, J., Dang, X., Yuan, W. (2016), Seismic Respnses of a Cable-Stayed Bridge with Consideration of Uniform Temperature Load, Applied Sciences, MDPI, 6, 408, 1-11.
  7. Jeong, H. C., Kim, I. H. (2009), Characteristics of Stress-strain Relationship of Concrete Confined by Lateral Reinforcement, Journal of the Earthquake Engineering Society of Korea, EESK, 13(3), 67-80. https://doi.org/10.5000/EESK.2009.13.3.067
  8. Zhong, J., Pang, Y., Jeon, J. S., Reginald, D., Wancheng, Y. (2016), Seismic fragility assessment of long-span cable-stayed bridges in China, Advance in Structural Engineering, SAGE, 19(11), 1797-1812. https://doi.org/10.1177/1369433216649380
  9. Zhong, J., Jeon, J. S., Yuan, W., Roches, R. D., (2017), Impact of Spatial Variability Parameters on Seismic Fragilities of a Cable-Stayed Bridge Subjected to Differential Support Motions, Journal of Bridge Engineering, ASCE, 22(6), 04017013. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001046
  10. Kim, D. K., Seo, H. Y., Kim, S. H. (2005), Seismic Fragility Curves of Extradosed Bridges with Lead Rubber Bearings, Journal of Korean Society of Civil Engineering, KSCE, 25(2A), 429-435.
  11. Kim, D. K., Seo, H. Y., Yi, J. H. (2006), Seismic Risk Assessment of Extradosed Bridge with Lead Rubber Bearings, Journal of Korean Society of Civil Engineering, KSCE, 26(1A), 155-162.
  12. Kim, D. S., Choi, H. S., Park, W. S., Koh, H. M. (2006), Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices, Journal of the Earthquake Engineering Society of Korea, EESK, 10(3), 1-11.
  13. Kim, J. C., Byeon, J. S., Shin, S. B. (2008), Seismic Fragility Analysis of a FCM Bridge Considering Soil Properties, Journal of the Earthquake Engineering Society of Korea, EESK, 12(3), 37-44. https://doi.org/10.5000/EESK.2008.12.3.037
  14. Lee, J. H., Kim, S. H. (2004), Probabilistic Safety Analysis for Seismic Performance Evaluation of Bridges, Journal of Computational Structural Engineering Institute of Korea, Vol. 17, 31-41.
  15. Lee, D. H., Chung, Y. S., Yang, D. W. (2009), Fragility Analysis Method Based on Seismic Performance of Bridge Structure considering Earthquake Frequencies, Journal of the Korea Concrete Institute, KCI, 21(2), 187-197. https://doi.org/10.4334/JKCI.2009.21.2.187
  16. Lee, D. H., Jeong, H. D., Kim, B. H. (2018), Seismic Fragility Analysis of a RC Bridge Including Earthquake Intensity Range, Journal of the Korean Society of Civil Engineers, KSCE, 38, 635-643. https://doi.org/10.12652/KSCE.2018.38.5.0635
  17. Mander, J. B., Priestley, M. J. N., and Park, R. (1988), Theoretical Stress‐Strain Model for Confined Concrete, Journal of Structural Engineering, 114(8).
  18. Menegotto, M., Pinto, P. E. (1973), Method of Analysis for Cyclic Loaded R. C. Plane Frame Including Changes in Geometry and Non-Elastic Behaviour of Elements under Combined Normal Force and Bending, IABSE Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Preliminary Report, 11, 15-22.
  19. Nguyen, D. D., Lee. T. H. (2018), Seismic fragility curves of bridge piers accounting for ground motions in Korea, IOP Conference Series: Earth and Environmental Science, 143(1), 1-10.
  20. Niels, J. G., Christos, T. G., (2012), Cable Supported Bridges Concept and Design, John Wiley & Sons, United Kingdom, 109-112.
  21. Ozgur, A., Ahmet Y., Alp, C. (2011), Analytical Fragility Curves for Ordinary Highway Bridges in Turkey, Earthquake Spectra, 27(4), 971-996. https://doi.org/10.1193/1.3651349
  22. Pang, Y., Wang, X., Shang, Y., Wu, L. (2014), Seismic Fragility Analysis of Cable-stayed Bridge in China : Comparison of fragility models, Journal of Bridge Engineering, ASCE, 19(4),
  23. Priestley, M. J. N., Seible, F., Calvi, G. M., (1996), Seismic Design and Retrofit of Bridges, Jonh wiley & Sons, INC, New-York.
  24. Khan, R. A., Datta, T. K., Ahmad, S. (2005), A simplified fragility analysis of fan type cable stayed bridges, Earthquake Engineering and Engineering Vibration, Vol. 4, 83-94. https://doi.org/10.1007/s11803-005-0027-6
  25. Seo, H. Y., Yi, J. H., Kim, D. K., Song, J. K., (2010), Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges, Journal of the Korea institute for structural maintenance and inspection, Vol. 14, 161-170.
  26. Shinozuka, M., Feng, M. Q., Kim, H. J., and Naganuma, T. (2000), Statistical Analysis of Fragility Curves, Journal of Engineering Mechanics, 126(12), 1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  27. Song, J. K., Jin, H. S., Lee, T. H. (2009), Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridge, Journal of Korean Society of Civil Engineering, KSCE, 29(2A), 119-130.
  28. Yi, J. H., Kim, S.H., Yun, C. B., Kushiyama, S. (2004), PDF Interpolation Technique for Seismic Fragility Analysis, Journal of Korean Society of Civil Engineering, KSCE, 24(2A), 391-399.
  29. Yi, J. H., Youn, J. Y., Yun, C. B. (2004), Seismic Risk Assessment of Bridges Using Fragility Analysis, Journal of the Earthquake Engineering Society of Korea, EESK, 8(6), 31-43. https://doi.org/10.5000/EESK.2004.8.6.031

피인용 문헌

  1. 2주탑 콘크리트 사장교의 경계조건별 지진 취약도 분석 vol.24, pp.5, 2020, https://doi.org/10.11112/jksmi.2020.24.5.77