• Title/Summary/Keyword: dynamic memory theory

Search Result 40, Processing Time 0.031 seconds

A New Memory-based Learning using Dynamic Partition Averaging (동적 분할 평균을 이용한 새로운 메모리 기반 학습기법)

  • Yih, Hyeong-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.456-462
    • /
    • 2008
  • The classification is that a new data is classified into one of given classes and is one of the most generally used data mining techniques. Memory-Based Reasoning (MBR) is a reasoning method for classification problem. MBR simply keeps many patterns which are represented by original vector form of features in memory without rules for reasoning, and uses a distance function to classify a test pattern. If training patterns grows in MBR, as well as size of memory great the calculation amount for reasoning much have. NGE, FPA, and RPA methods are well-known MBR algorithms, which are proven to show satisfactory performance, but those have serious problems for memory usage and lengthy computation. In this paper, we propose DPA (Dynamic Partition Averaging) algorithm. it chooses partition points by calculating GINI-Index in the entire pattern space, and partitions the entire pattern space dynamically. If classes that are included to a partition are unique, it generates a representative pattern from partition, unless partitions relevant partitions repeatedly by same method. The proposed method has been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory and FPA, and RPA.

A New Flash Memory Package Structure with Intelligent Buffer System and Performance Evaluation (버퍼 시스템을 내장한 새로운 플래쉬 메모리 패키지 구조 및 성능 평가)

  • Lee Jung-Hoon;Kim Shin-Dug
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.2
    • /
    • pp.75-84
    • /
    • 2005
  • This research is to design a high performance NAND-type flash memory package with a smart buffer cache that enhances the exploitation of spatial and temporal locality. The proposed buffer structure in a NAND flash memory package, called as a smart buffer cache, consists of three parts, i.e., a fully-associative victim buffer with a small block size, a fully-associative spatial buffer with a large block size, and a dynamic fetching unit. This new NAND-type flash memory package can achieve dramatically high performance and low power consumption comparing with any conventional NAND-type flash memory. Our results show that the NAND flash memory package with a smart buffer cache can reduce the miss ratio by around 70% and the average memory access time by around 67%, over the conventional NAND flash memory configuration. Also, the average miss ratio and average memory access time of the package module with smart buffer for a given buffer space (e.g., 3KB) can achieve better performance than package modules with a conventional direct-mapped buffer with eight times(e.g., 32KB) as much space and a fully-associative configuration with twice as much space(e.g., 8KB)

Stereo vision Techniques for Correct extract of Moving object (이동물체의 정확한 추출을 위한 스테레오 알고리즘)

  • Kim, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2531-2533
    • /
    • 2005
  • The proposed neural network technique is the real time computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objects during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of objects. All of therm request much memory space and time. Therefore the most reliable neural-network algorithm is drived for real-time matching of obejects, which is composed of a dynamic programming algorithm based on sequence matching techniques in moving objects.

  • PDF

A Propagation Programming Neural Network for Real-time matching of Stereo Images (스테레오 영상의 실시간 정합을 위한 보간 신경망 설계)

  • Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.194-199
    • /
    • 2003
  • Depth error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The proposed neural network technique is the real time computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objects during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of objects. All of them request much memory space and time. Therefore the most reliable neural-network algorithm is derived for real-time matching of objects, which is composed of a dynamic programming algorithm based on sequence matching techniques.

  • PDF

WADPM : Workload-Aware Dynamic Page-level Mapping Scheme for SSD based on NAND Flash Memory (낸드 플래시 메모리 기반 SSD를 위한 작업부하 적응형 동적 페이지 매핑 기법)

  • Ha, Byung-Min;Cho, Hyun-Jin;Eom, Young-Ik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.4
    • /
    • pp.215-225
    • /
    • 2010
  • The NAND flash memory based SSDs are considered to replace the existing HDDs. To maximize the I/O performance, SSD is composed of several NAND flash memories in parallel. However, to adopt the hybrid mapping scheme in SSD may cause degradation of the I/O performance. In this paper, we propose a new mapping scheme for the SSD called WADPM. WADPM loads only necessary mapping information into RAM and dynamically adjusts the size of mapping information in the RAM. So, WADPM avoids the shortcoming of page-level mapping scheme that requires too large mapping table. Performance evaluation using simulations shows that I/O performance of WADPM is 3.5 times better than the hybrid-mapping scheme and maximum size of mapping table of WADPM is about 50% in comparison with the page-level mapping scheme.

Enhancing Dependability of Systems by Exploiting Storage Class Memory (스토리지 클래스 메모리를 활용한 시스템의 신뢰성 향상)

  • Kim, Hyo-Jeen;Noh, Sam-H.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • In this paper, we adopt Storage Class Memory, which is next-generation non-volatile RAM technology, as part of main memory parallel to DRAM, and exploit the SCM+DRAM main memory system from the dependability perspective. Our system provides instant system on/off without bootstrapping, dynamic selection of process persistence or non-persistence, and fast recovery from power and/or software failure. The advantages of our system are that it does not cause the problems of checkpointing, i.e., heavy overhead and recovery delay. Furthermore, as the system enables full application transparency, our system is easily applicable to real-world environments. As proof of the concept, we implemented a system based on a commodity Linux kernel 2.6.21 operating system. We verify that the persistence enabled processes continue to execute instantly at system off-on without any state and/or data loss. Therefore, we conclude that our system can improve availability and reliability.

A Dynamic Buffer Allocation Scheme in Video-on-Demand System (주문형 비디오 시스템에서의 동적 버퍼 할당 기법)

  • Lee, Sang-Ho;Moon, Yang-Sae;Whang, Kyu-Young;Cho, Wan-Sup
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.9
    • /
    • pp.442-460
    • /
    • 2001
  • In video-on-demand(VOD) systems it is important to minimize initial latency and memory requirements. The minimization of initial latency enables the system to provide services with short response time, and the minimization of memory requirements enables the system to service more concurrent user requests with the same amount of memory. In VOD systems, since initial latency and memory requirement increase according to the increment of buffer size allocated to user requests, the buffer size allocated to user requests must be minimized. The existing static buffer allocation scheme, however, determines the buffer size based on the assumption that thy system is in fully loaded state. Thus, when the system is in partially loaded state, the scheme allocates user requests unnecessarily large buffers. This paper proposes a dynamics buffer allocation scheme that allocates user requests the minimum buffer size in fully loaded state as well as a partially loaded state. This scheme dynamically determines the buffer size based on the number of user requests in service and the number of user requests arriving while servicing current requests. In addition, through analyses and simulations, this paper validates that the dynamics buffer allocation outperforms the statics buffer allocation in initial latency and the number of concurrent user requests that can be supported. Our simulation results show that, in proportion to the static buffer allocation scheme, the dynamic buffer allocation scheme reduces the average initial latency by 29%~65%, and in a systems having several disks. increases the average number of concurrent user requests by 48%~68%. Our results show that the dynamic buffer allocation scheme significantly improves the performance and reduce the capacity requirements of VOD systems.

  • PDF

An Efficient Model for Dynamic Analysis of Caisson Breakwaters under Impulsive Wave Loadings (충격파력을 받는 케이슨 방파제의 동적 해석 모델)

  • 박우선;안희도
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.108-115
    • /
    • 1995
  • An efficient model for the dynamic analysis of caisson breakwaters under impulsive wave loadings is presented. The caisson structure is. regarded as a rigid body, and the rubble mound foundation is idealized as virtual added masses, springs, and dampers using the elastic half-space theory. The frequency-dependent hydrodynamic added mass and damping coefficients are considered by using the time memory functions and added mass at infinite frequency. To simulate the permanent sliding phenomenon of the caisson, the horizontal spring is modeled as a nonlinear spring with plastic behaviors. Comparisons with experimental results show that the present model gives fairly good results. Sensitivity analysis is performed for the relevant parameters affecting the dynamic responses of a caisson breakwater. Numerical experiments are also carried out to investigate the applicability to the prediction of permanent sliding distance and critical weight of the caisson.

  • PDF

Design and Implementation of Hybrid Hard Disk I/O System based on n-Block Prefetching for Low Power Consumption and High I/O Performance (저전력과 입출력 성능이 향상된 n-블록 선반입 기반의 하이브리드 하드디스크 입출력 시스템 설계 및 구현)

  • Yang, Jun-Sik;Go, Young-Wook;Lee, Chan-Gun;Kim, Deok-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.451-462
    • /
    • 2009
  • Recently, there are many active studies to enhance low I/O performance of hard disk device. The studies on the hardware make good progress whereas those of the system software to enhance I/O performance may not support the hardware performance due to its poor progress. In this paper, we propose a new method of prefetching n-blocks into the flash memory. The proposed method consists of three steps: (1)analyzing the pattern of read requests in block units; (2)determining the number of blocks prefetched to flash memory; (3)replacing blocks according to block replacement policy. The proposed method can reduce the latency time of hard disk and optimize the power consumption of the computer system. Experimental results show that the proposed dynamic n-block method provides better average response time than that of the existing AMP(Adaptive multi stream prefetching) method by 9.05% and reduces the average power consumption than that of the existing AMP method by 11.11%.

DNS-based Dynamic Load Balancing Method on a Distributed Web-server System (분산 웹 서버 시스템에서의 DNS 기반 동적 부하분산 기법)

  • Moon, Jong-Bae;Kim, Myung-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.193-204
    • /
    • 2006
  • In most existing distributed Web systems, incoming requests are distributed to servers via Domain Name System (DNS). Although such systems are simple to implement, the address caching mechanism easily results in load unbalancing among servers. Moreover, modification of the DNS is necessary to load considering the server's state. In this paper, we propose a new dynamic load balancing method using dynamic DNS update and round-robin mechanism. The proposed method performs effective load balancing without modification of the DNS. In this method, a server can dynamically be added to or removed from the DNS list according to the server's load. By removing the overloaded server from the DNS list, the response time becomes faster. For dynamic scheduling, we propose a scheduling algorithm that considers the CPU, memory, and network usage. We can select a scheduling policy based on resources usage. The proposed system can easily be managed by a GUI-based management tool. Experiments show that modules implemented in this paper have low impact on the proposed system. Furthermore, experiments show that both the response time and the file transfer rate of the proposed system are faster than those of a pure Round-Robin DNS.