• Title/Summary/Keyword: dynamic line

Search Result 1,599, Processing Time 0.035 seconds

A New Feature-Based Visual SLAM Using Multi-Channel Dynamic Object Estimation (다중 채널 동적 객체 정보 추정을 통한 특징점 기반 Visual SLAM)

  • Geunhyeong Park;HyungGi Jo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.65-71
    • /
    • 2024
  • An indirect visual SLAM takes raw image data and exploits geometric information such as key-points and line edges. Due to various environmental changes, SLAM performance may decrease. The main problem is caused by dynamic objects especially in highly crowded environments. In this paper, we propose a robust feature-based visual SLAM, building on ORB-SLAM, via multi-channel dynamic objects estimation. An optical flow and deep learning-based object detection algorithm each estimate different types of dynamic object information. Proposed method incorporates two dynamic object information and creates multi-channel dynamic masks. In this method, information on actually moving dynamic objects and potential dynamic objects can be obtained. Finally, dynamic objects included in the masks are removed in feature extraction part. As a results, proposed method can obtain more precise camera poses. The superiority of our ORB-SLAM was verified to compared with conventional ORB-SLAM by the experiment using KITTI odometry dataset.

Estimation Technique of Power Transmission Line Parameter by Phasor Measurement Units (송전선로 파라메터 정밀 예측을 위한 페이저 측정기의 응용)

  • Cho, Ki-Seon;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.193-195
    • /
    • 2003
  • This paper presents an approach to estimate the power transmission line parameter by phasor measurement units(PMUs), which are synchronized to 1 pps signal of GPS. Existing approaches to estimate power transmission line parameter, are mainly off-line ones, based on faults or switching events on other neighboring lines. In this paper, to obtain static and dynamic properties of power transmission line parameter in service, the prototype of pmu-based Transmission Line Parameter Monitoring System (TLPMS) is proposed. Also, an technique to estimate parameters of transmission line described as 2-port network model and the soundness of estimated parameters are addressed.

  • PDF

A Study on the Dynamic Component of Cutting Force in Turning[1] -Recognition of Chip Flow by the Dynamic Cutting Force Component- (선삭가공에 있어서 절삭저항의 동적성분에 관한 연구 [I] -동적성분에 의한 Chip배출상태의 인식-)

  • Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.84-93
    • /
    • 1988
  • The on-line detection of the chip flow is one of the most important technologies in com- pletly automatic operation of machine tool, such as FMS and Unmanned Factories. This problem has been studied by many researchers, however, it is not solved as yet. For the recognition of chip flow in this study, the dynamic cutting force components due to the chip breaking were measured by dynamometer of piezo-electric type, and the frequency components of cutting force were also analyzed. From the measured results, the effect of cutting conditions and tool geometry on the dynamic cutting force component and chip formation were investigated in addition to the relationships between frequency of chip breaking (fB) and side serrated crack (fC) of chip. As a result, the following conclusions were obtaianed. 1) The chip formations have a large effect on the dynamic cutting force components. When chip breaking takes place, the dynamic cutting force component greatly increases, and the peridoic components appear, which correspond to maximum peak- frequency. 2) The crater wear of tool has a good effect on the chip control causing the chiup to be formed as upward-curl shape. In this case, the dymamic cutting force component greatly increases also 3) fB and fC of chip are closely corelated, and fC of chips has a large effect on the change of the situation of chip flow and dynamic cutting force component. 4) Under wide cutting conditions, the limit value (1.0 kgf) of dynamic cutting force component exists between the broken and continuous chips. Accordingly, this value is suitable for recognition of chip flow in on-line control of the cutting process.

  • PDF

Seismic responses of transmission tower-line system under coupled horizontal and tilt ground motion

  • Wei, Wenhui;Hu, Ying;Wang, Hao;Pi, YongLin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.635-647
    • /
    • 2019
  • Tests and theoretical studies for seismic responses of a transmission tower-line system under coupled horizontal and tilt (CHT) ground motion were conducted. The method of obtaining the tilt component from seismic motion was based on comparisons from the Fourier spectrum of uncorrected seismic waves. The collected data were then applied in testing and theoretical analysis. Taking an actual transmission tower-line system as the prototype, shaking table tests of the scale model of a single transmission tower and towers-line systems under horizontal, tilt, and CHT ground motions were carried out. Dynamic equations under CHT ground motion were also derived. The additional P-∆ effect caused by tilt motion was considered as an equivalent horizontal lateral force, and it was added into the equations as the excitation. Test results were compared with the theoretical analysis and indicated some useful conclusions. First, the shaking table test results are consistent with the theoretical analysis from improved dynamic equations and proved its correctness. Second, the tilt component of ground motion has great influence on the seismic response of the transmission tower-line system, and the additional P-∆effect caused by the foundation tilt, not only increases the seismic response of the transmission tower-line system, but also leads to a remarkable asymmetric displacement effect. Third, for the tower-line system, transmission lines under ground motion weaken the horizontal displacement and acceleration responses of transmission towers. This weakening effect of transmission lines to the main structure, however, will be decreased with consideration of tilt component.

Study of the dynamic characteristics of a hydraulic power supply (유압공급장치의 동특성에 관한 연구)

  • 이성래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1172-1177
    • /
    • 1993
  • Dynamic characteristics of a hydraulic power supply are studied theoretically and computationally. The transfer function between the supply pressure and the load flow is derived considering relief valve dynamics, accumulator dynamics, and flow line dynamics. Frequency responses and time responses are obtained in many conditions using the transfer function and nonlinear mathematical model respectively.

  • PDF

A method for the determination of transient flow rates from pressure measurements (압력측정을 이용한 과도기유량의 결정방법에 관한 연구)

  • 이성래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.724-729
    • /
    • 1992
  • A transient hydraulic flow rate computation scheme is described here so that the transient hydraulic flow rate can be determined using the dynamic pressure measurements at the ends of a straight flowline with a dynamic, model of the hydraulic line. Simulation results indicate that the method is relatively robust to realistic levels of uncertainties in the fluid properties.

  • PDF

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

Vibration analysis of the plates subject to dynamic concentrated loads by using spectral element method (스펙트럴요소법을 이용한 동적집중하중을 받는 평판의 진동해석)

  • Lee, Joon-Keun;Lee, U-sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.635-643
    • /
    • 1998
  • A spectral element method(SEM) is introduced for the vibration analysis of a rectangular plate subject to dynamic concentrated loads. First, the spectral plate element is derived from the relations between the forces and displacements along the two opposite edges of plate element. The global spectral matrix equation is then formulated by assembling two spectral plate elements so that the dynamic concentrated load is located at the connection nodal line between two plate elements. the concentrated load is then spatially Fourier transformed in the direction of the connection nodal line to transform the two-dimensional plate problem into a simplified equivalent one-dimensional beam-like problem. We may benefit from these procedures in that the spectral results from the present SEM is compared with the exact analytical solutions to prove the remarkable accuracy of the present SEM, while this is not true for conventional finite element solutions, especially at high frequency.