• Title/Summary/Keyword: dynamic interval

Search Result 335, Processing Time 0.03 seconds

Dynamic response analysis for structures with interval parameters

  • Chen, Su Huan;Lian, Hua Dong;Yang, Xiao Wei
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.299-312
    • /
    • 2002
  • In this paper, a new method to solve the dynamic response problem for structures with interval parameters is presented. It is difficult to obtain all possible solutions with sharp bounds even an optimum scheme is adopted when there are many interval structural parameters. With the interval algorithm, the expressions of the interval stiffness matrix, damping matrix and mass matrices are developed. Based on the matrix perturbation theory and interval extension of function, the upper and lower bounds of dynamic response are obtained, while the sharp bounds are guaranteed by the interval operations. A numerical example, dynamic response analysis of a box cantilever beam, is given to illustrate the validity of the present method.

Fully Dynamic Algorithm for the Vertex Connectivity of Interval Graphs (선분 그래프의 정점 연결성에 대한 완전 동적 알고리즘)

  • Kim, Jae-hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.415-420
    • /
    • 2016
  • A graph G=(V,E) is called an interval graph with a set V of vertices representing intervals on a line such that there is an edge $(i,j){\in}E$ if and only if intervals i and j intersect. In this paper, we are concerned in the vertex connectivity, one of various characteristics of the graph. Specifically, the vertex connectivity of an interval graph is represented by the overlapping of intervals. Also we propose an efficient algorithm to compute the vertex connectivity on the fully dynamic environment in which the vertices or the edges are inserted or deleted. Using a special kind of interval tree, we show how to compute the vertex connectivity and to maintain the tree in O(logn) time when a new interval is added or an existing interval is deleted.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

Robust D-Stability and D-Stabilization of Dynamic Interval Systems

  • Mao, Wei-Jie;Chu, Jian
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • A sufficient condition for the robust D-stability of dynamic interval systems is proposed in this paper. This D-stability condition is based on a parameter-dependent Lyapunov function obtained from the feasibility of a set of matrix inequalities defined at a series of partial-vertex-based interval matrices other than the total vertex matrices as previous results. This condition is also extended to the robust D-stabilization problem of dynamic interval systems, which supplies an effective synthesis procedure for any LMI D-region. The proposed conditions can be simplified to a set of LMIs, which can be solved by efficient interior point methods in polynomial time.

An Optimal and Dynamic Monitoring Interval for Grid Resource Information Services (그리드 자원정보 서비스를 위한 최적화된 동적 모니터링 인터벌에 관한 연구)

  • Kim Hye-Ju;Huh Eui-Nam;Lee Woong-Jae;Park Hyoung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.13-24
    • /
    • 2003
  • Grid technology requires use of geographically distributed resources from multiple domains. Resource monitoring services or tools consisting sensors or agents will run on many systems to find static resource information (such as architecture vendor, OS name and version, MIPS rate, memory size, CPU capacity, disk size, and NIC information) and dynamic resource information (CPU usage, network usage(bandwidth, latency), memory usage, etc.). Thus monitoring itself may cause system overhead. This paper proposes the optimal monitoring interval to reduce the cost of monitoring services and the dynamic monitoring interval to measure monitoring events accurately. By employing two features, we find out unnecessary system overhead is significantly reduced and accuracy of events is still acquired.

  • PDF

Robust regulator design for an interval plant (구간 플랜트에 대한 견실한 레귤레이타 설계)

  • 김기두;김석중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.173-178
    • /
    • 1993
  • In this paper, we present an algorithmic technique for determining a feedback compensator which will stabilize the interval dynamic system, specifically, the robust regulator design for interval plants. The approach taken here is to allow the system parameters to live within prescribed intervals then design a dynamic feedback compensator which guarantees closed-loop system stable. The main contribution of this paper is the idea of introducing a "simplified Kharitonov's result" for low order polynomials to search for suitable compensator parameters in the compensator parameter space to make the uncertain syste robust. We also design the robust regulator which will D-stabilize (have the closed-loop poles in the left sector only) the dynamic interval system while having good performance. The nuerical examples are given to show the substantially improved robustness which results from our approach. approach.

  • PDF

Robust Regulator Design for an Interval Plant (구경 플랜트에 대한 강건한 레귤레이터의 설계)

  • 김기두;김석중;조한유
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.64-73
    • /
    • 1994
  • In this paper we present an algorithmic technique for determining a feedback compensator which will stabilize the interval dynamic system specifically the robust regulator design for interval plants. The approach taken here is to allow the system parameters to live within prescribed intervals then design a dynamic feedback compensator which guarantees closed-loop system stable. The main contribution of this paper is the idea of introducting a "simplified Kharitonov`s results" for low order polynomials to search for suitable compensator parameters in the compensator parammeter space to make the uncertain system robust. We also design the robust regulator which will $D_{\phi}$ -stabilize (have the closed-loop poles in the left sector only) the dynamic interval system while having good performance. the numerical examples are given to show the substantially improved robustness which results from our approach.

  • PDF

Sequential Hypothesis Testing based Polling Interval Adaptation in Wireless Sensor Networks for IoT Applications

  • Lee, Sungryoul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1393-1405
    • /
    • 2017
  • It is well known that duty-cycling control by dynamically adjusting the polling interval according to the traffic loads can effectively achieve power saving in wireless sensor networks. Thus, there has been a significant research effort in developing polling interval adaptation schemes. Especially, Dynamic Low Power Listening (DLPL) scheme is one of the most widely adopted open-looping polling interval adaptation techniques in wireless sensor networks. In DLPL scheme, if consecutive idle (busy) samplings reach a given fixed threshold, the polling interval is increased (decreased). However, due to the trial-and-error based approach, it may significantly deteriorate the system performance depending on given threshold parameters. In this paper, we propose a novel DLPL scheme, called SDL (Sequential hypothesis testing based Dynamic LPL), which employs sequential hypothesis testing to decide whether to change the polling interval conforming to various traffic conditions. Simulation results show that SDL achieves substantial power saving over state-of-the-art DLPL schemes.

A Dynamic Discount Approach to the Poisson Process

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.271-276
    • /
    • 1997
  • A dynamic discount approach is proposed for the estimation of the Poisson parameter and the forecasting of the Poisson random variable, where the parameter of the Poisson distribution varies over time intervals. The recursive estimation procedure of the Poisson parameter is provided. Also the forecasted distribution of the Poisson random variable in the next time interval based on the information gathered until the current time interval is provided.

  • PDF

Study on BLENDED CAM DESIGN (복합곡선으로 이루어진 캠의 설계에 관한 연구)

  • Yang, Min-Yang;Shon, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.59-65
    • /
    • 1995
  • The cam is used to a main component in a variety of automatic machines and instruments. To meet the demand of a complicated operation and of reducing weight for automatic machine, Curve Blending Technology, in which each of the basic curves suitable for individual interval is connected, is used for the cam design. In the curve blending, it is necessary to select appropriate elementary curve for each interval and to confirm the dynamic continuity at connecting points between adjoining elementary curves. This paper represented the elementary curve selection method to select an appropriate curve for each interval, and executed computation for the follower displacement and angular displacement of each interval. The paper made an analysis and examine closely for elementary curves to synthesizing curve blending, and it performed dynamic conditions clearly at every points on the cam motions. Therefore the curve blending technology presented by the paper turned into easier work.

  • PDF