• Title/Summary/Keyword: dynamic failure

Search Result 943, Processing Time 0.024 seconds

Dynamic nonlinear member failure propagation in truss structures

  • Malla, Ramesh B.;Nalluri, Butchi B.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-126
    • /
    • 2000
  • Truss type structures are attractive to a variety of engineering applications on earth as well as in space due to their high stiffness to mass ratios and ease of construction and fabrication. During the service life, an individual member of a truss structure may lose load carrying capacity due to many reasons, which may lead to collapse of the structure. An analytical and computational procedure has been developed to study the response of truss structures subject to member failure under static and dynamic loadings. Emphasis is given to the dynamic effects of member failure and the propagation of local damage to other parts of the structure. The methodology developed is based on nonlinear finite element analysis technique and considers elasto-plastic material nonlinearity, postbuckling of members, and large deformation geometric nonlinearity. The pseudo force approach is used to represent the member failure. Results obtained for a planar nine-bay indeterminate truss undergoing sequential member failure show that failure of one member can initiate failure of several members in the structure.

Failure analysis of composite plates under static and dynamic loading

  • Ray, Chaitali;Majumder, Somnath
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • The present paper deals with the first ply failure analysis of the laminated composite plates under various static and dynamic loading conditions. Static analysis has been carried out under patch load and triangular load. The dynamic failure analysis has been carried out under triangular pulse load. The formulation has been carried out using the finite element method and a computer code has been developed. The first order shear deformation theory has been applied in the present formulation. The displacement time history analysis of laminated composite plate has been carried out and the results are compared with those published in literature to validate the formulation. The first ply failure load for laminated composite plates with various lamination schemes under static and dynamic loading conditions has been calculated using various failure criteria. The failure index-time history analysis has also been carried out and presented in this paper.

Dynamic Response based Reliability Analysis of Structure with Passive Damper - Part 1: Assessment of Member Failure Probability (수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제1편: 부재별 파괴확률 산정)

  • Kim, Seung-Min;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.90-96
    • /
    • 2016
  • This study proposes a dynamic reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this dynamic reliability analysis, the failure event is defined as an event that the dynamic response of the structural system exceeds a displacement limit, whereas the conventional reliability analysis method has limitations that do not properly assess the actual time history response of the structure subjected to dynamic loads, such as earthquakes and high winds, by taking the static response into account in the failure event. In this first paper, we discuss the control effect of the viscous damper on the seismic performance of the member-level failure where the failure event of the structural member consists of the union set of time-sequential member failures during the earthquake excitations and the failure probability of the earthquake-excited structural member is computed using system reliability approach to consider the statistical dependence of member failures between the subsequent time points. Numerical results demonstrate that the proposed approach can present a reliable assessment of the control performance of the viscous damper system in comparison with MCS method. The most important advantage of the proposed approach can provide us more accurate estimate of failure probability of the structural control system by using the actual time-history responses obtained by dynamic response analysis.

Prediction of Dynamic Expected Time to System Failure

  • Oh, Deog-Yeon;Lee, Chong-Chul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.244-250
    • /
    • 1997
  • The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent Property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability's or components are combined, which results in the dynamic MTTF or system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not.

  • PDF

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

Dynamic Reliability Model for Stability Analysis of Armor Units on Rubble-Mound Breakwater (경사제 피복재의 안정성 해석을 위한 동력학적 신뢰성 모형)

  • Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.163-174
    • /
    • 2001
  • A dynamic reliability model for analyzing the stability of armor units on rubble-mound breakwater is mathematically developed by using Hudson's formula and definition of single-failure mode. The probability density functions of resistance and loading functions are defined properly, the related parameters to those probability density functions are also estimated straightforwardly by the first-order analysis. It is found that probabilities of failure for the stability of armor units on rubble-mound breakwater are continuously increased as the service periods are elapsed, because of the occurrence of repeated loading of random magnitude by which the resistance may be deteriorated. In particular, the factor of safety is incorporated into the dynamic reliability model in order to evaluate the probability of failure as a function of factor of safety. It may thus be possible to take some informations for optimal design as well as managements and repairs of armor units on rubble-mound breakwater from the dynamic reliability analyses.

  • PDF

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Failure Detection Using Adaptive Predictor (적응예측기를 이용한 고장파악방법)

  • 이연석;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.210-217
    • /
    • 1990
  • For the failure detection of dynamic systems, processing the residuals from the observer of the estimator is the most general method. A failure detection method which use an adaptive predictor to separate the effect of sensor failure from the additive noise in the residuals of a Kalman filter that is employed as an estimator of a dynamic system is addressed here. In the method, the property of the residuals of an optimal Kalman estimator is exploited. The simulation results of this method shows that the proposed method is superior to the sequential probability ratio test for a small failure magnitude.

  • PDF

Experimental study on the dynamic behavior of pervious concrete for permeable pavement

  • Bu, Jingwu;Chen, Xudong;Liu, Saisai;Li, Shengtao;Shen, Nan
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.291-303
    • /
    • 2018
  • As the concept of "sponge city" is proposed, the pervious concrete for permeable pavement has been widely used in pavement construction. This paper aims at investigating the dynamic behavior and energy evolution of pervious concrete under impact loading. The dynamic compression and split tests are performed on pervious concrete by using split Hopkinson pressure bar equipment. The failure criterion on the basis of incubation time concept is used to analyze the dynamic failure. It is demonstrated that the pervious concrete is of a strain rate sensitive material. Under high strain rate loading, the dynamic strength increases while the time to failure approximately decreases linearly as the strain rate increases. The predicted dynamic compressive and split tensile strengths based on the failure criterion are in accordance with the experimental results. The total damage energy is found to increase with the increasing of strain rate, which means that more energy is needed to produce irreversible damage as loading rate increases. The fractal dimensions are observed increases with the increasing of impact loading rate.

Some Characterization Results Based on Dynamic Survival and Failure Entropies

  • Abbasnejad, Maliheh
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.787-798
    • /
    • 2011
  • In this paper, we develop some characterization results in terms of survival entropy of the first order statistic. In addition, we generalize the cumulative entropy recently proposed by Di Crescenzo and Logobardi (2009) to a new measure of information (called the failure entropy) and study some properties of it and its dynamic version. Furthermore, power distribution is characterized based on dynamic failure entropy.