Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.5.567

Study on failure behaviors of mixed-mode cracks under static and dynamic loads  

Zhou, Lei (Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Southwest University of Science and Technology)
Chen, Jianxing (Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University)
Zhou, Changlin (Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC)
Zhu, Zheming (Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University)
Dong, Yuqing (Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University)
Wang, Hanbing (Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University)
Publication Information
Geomechanics and Engineering / v.29, no.5, 2022 , pp. 567-582 More about this Journal
Abstract
In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.
Keywords
dynamic loads; failure behavior; flawed roadway tunnel models; mixed-mode crack; static loads;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Reddish, D.J., Stace, L.R., Vanichkobchinda, P. and Whittles, D.N. (2005), "Numerical simulation of the dynamic impact breakage testing of rock", Int. J. Rock Mech. Min., 42(2), 167-176. https://doi.org/10.1016/j.ijrmms.2004.06.004.   DOI
2 Jia, P. and Tang, C.A. (2008), "Numerical study on failure mechanism of tunnel in jointed rock mass", Tunn. Undergr. Sp. Tech., 23(5), 500-507. https://doi.org/10.1016/j.tust.2007.09.001.   DOI
3 Wang, L., Zhu, Z., Zhou, L., Gao, W., Dong, Y., Niu, C. and Ai, T. (2021), "Study the effect of circular hole on dynamic fracture properties of cracked PMMA specimen under impact loads", Int. J. Impact Eng., 156, 103948. https://doi.org/10.1016/j.ijimpeng.2021.103948.   DOI
4 Wang, M., Zhu, Z., Dong, Y. and Zhou, L. (2017), "Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads", Eng. Fract. Mech., 177, 33-44. https://doi.org/10.1016/j.engfracmech.2017.03.042.   DOI
5 Wang, Q., Zhu, W., Xu, T., Niu, L. and Wei, J. (2016a), "Numerical Simulation of Rock Creep Behavior with a Damage-Based Constitutive Law", Int. J. Geomech., 17, 04016044. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000707.   DOI
6 Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004.   DOI
7 Xu, Z. and Li, Y. (2012), "A novel method in determination of dynamic fracture toughness under mixed mode I/II impact loading", Int. J. Solids Struct., 49(2), 366-376. https://doi.org/10.1016/j.ijsolstr.2011.10.011.   DOI
8 Wang, Q.Z., Yang, J.R., Zhang, C.G., Zhou, Y., Li, L., Wu, L.Z. and Huang, R.Q. (2016b), "Determination of dynamic crack initiation and propagation toughness of a rock using a hybrid experimental-numerical approach", J. Eng. Mech., 142(12), 1-9. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001155.   DOI
9 Xie, L.X., Yang, S.Q., Gu, J.C., Zhang, Q.B., Lu, W.B., Jing, H.W. and Wang, Z.L. (2019), "JHR constitutive model for rock under dynamic loads", Comput. Geotech., 108, 161-172. https://doi.org/10.1016/j.compgeo.2018.12.024.   DOI
10 Tang, S.B., Zhang, H., Tang, C.A. and Liu, H.Y. (2016), "Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock", Int. J. Solids Struct., 80, 520-531. https://doi.org/10.1016/j.ijsolstr.2015.10.012.   DOI
11 Sarfarazi, V., Haeri, H., Ebneabbasi, P., Shemirani, A.B. and Hedayat, A. (2018), "Determination of tensile strength of concrete using a novel apparatus", Constr. Build. Mater., 166, 817-832. https://doi.org/10.1016/j.conbuildmat.2018.01.157.   DOI
12 Wu, F., Gao, R., Zou, Q., Chen, J., Liu, W. and Peng, K. (2020), "Long-term strength determination and nonlinear creep damage constitutive model of salt rock based on multistage creep test: Implications for underground natural gas storage in salt cavern", Energy Sci. Eng., 8(5), 1592-1603. https://doi.org/10.1002/ese3.617.   DOI
13 Xu, T., He, Z.J., Tang, C.A., Zhu, W.C. and Ranjith, P.G. (2015), "Finite element analysis of width effect in interface debonding of FRP plate bonded to concrete", Finite Elem. Anal. Des., 93, 30-41. https://doi.org/10.1016/j.finel.2014.08.009.   DOI
14 Li, M., Zhu, Z., Liu, R., Liu, B., Zhou, L. and Dong, Y. (2018), "Study of the effect of empty holes on propagating cracks under blasting loads", Int. J. Rock Mech. Min., 103, 186-194. https://doi.org/10.1016/j.ijrmms.2018.01.043.   DOI
15 Liao, Z.Y., Zhu, J.B. and Tang, C.A. (2019) "Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests", Int. J. Rock Mech. Min., 115, 21-32. https://doi.org/10.1016/j.ijrmms.2019.01.007.   DOI
16 Lesiuk, G., Smolnicki, M., Mech, R., Ziety, A. and Fragassa, C. (2020), "Analysis of fatigue crack growth under mixed mode (I + II) loading conditions in rail steel using CTS specimen", Eng. Fail. Anal., 109, 104354. https://doi.org/10.1016/j.engfailanal.2019.104354.   DOI
17 Yu, L., Zhang, Z., Wu, J., Liu, R., Qin, H. and Fan, P. (2020), "Experimental study on the dynamic fracture mechanical properties of limestone after chemical corrosion", Theor. Appl. Fract. Mech., 108, 102620. https://doi.org/10.1016/j.tafmec.2020.102620.   DOI
18 Zhu, Z., Mohanty, B. and Xie, H. (2007), "Numerical investigation of blasting-induced crack initiation and propagation in rocks", Int. J. Rock Mech. Min. Sci., 44(3), 412-424. https://doi.org/10.1016/j.ijrmms.2006.09.002.   DOI
19 Mitra, E., Hazell, P.J. and Ashraf, M. (2015), "A discrete element model to predict the pressure-density relationship of blocky and angular ceramic particles under uniaxial compression", J. Mater. Sci., https://doi.org/10.1007/s10853-015-9344-y.   DOI
20 Rege, K., Grnsund, J. and Pavlou, D.G. (2019), "Mixed-mode I and II fatigue crack growth retardation due to overload: An experimental study", Int. J. Fatigue, 129, 105227. https://doi.org/10.1016/j.ijfatigue.2019.105227.   DOI
21 Shi, G.H. 1992 "Discontinuous Deformation Analysis: A New Numerical Model for the Statics and Dynamics of Deformable Block Structures". Eng. Comput., https://doi.org/10.1108/eb023855.   DOI
22 Huang, X., Tang, S.B., Tang, C.A., Xie, L.M. and Tao, Z.Y. (2017), "Numerical simulation of cracking behavior in artificially designed rock models subjected to heating from a central borehole", Int. J. Rock Mech. Min. Sci., 98, 191-202. https://doi.org/10.1016/j.ijrmms.2017.07.016.   DOI
23 Alneasan, M., Behnia, M. and Bagherpour, R. (2019), "Analytical and numerical investigations of dynamic crack propagation in brittle rocks under mixed mode loading", Constr. Build. Mater., 222, 544-555. https://doi.org/10.1016/j.conbuildmat.2019.06.163.   DOI
24 Fan, Y., Zhao, Y., Zhu, Z., Zhou, L. and Dong, Y. (2017), "Stress intensity factors for a tunnel containing a radial crack under compression", Adv. Mech. Eng., 9(12), 168781401774541. https://doi.org/10.1177/1687814017745414.   DOI
25 Haeri, H., Sarfarazi, V., Bagher Shemirani, A. and Fatehi Marji, M. (2018), "On the direct experimental measurement of mortar fracture toughness by a compression-to-tensile load transformer (CTLT)", Constr. Build. Mater., 181, 687-712. https://doi.org/10.1016/j.conbuildmat.2018.06.066.   DOI
26 Haeri, H., Sarfarazi, V., Ebneabbasi, P., Nazari maram, A., Shahbazian, A., Fatehi Marji, M. and Mohamadi, A.R. (2020), "XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression", Constr. Build. Mater., 236, 117500. https://doi.org/10.1016/j.conbuildmat.2019.117500.   DOI
27 Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression", J. Cent. South Univ., 21(6), 2404-2414. https://doi.org/10.1007/s11771-014-2194-y.   DOI
28 Aliha, M.R.M., Bahmani, A. and Akhondi, Sh. (2016), "Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens", Eur. J. Mech. -A Solids 58, 148-162. https://doi.org/10.1016/j.euromechsol.2016.01.012.   DOI
29 Ajdani, A., Ayatollahi, M.R., Akhavan-Safar, A. and Martins da Silva, L.F. (2020), "Mixed mode fracture characterization of brittle and semi-brittle adhesives using the SCB specimen", Int. J. Adhes. Adhes., 101, 102629. https://doi.org/10.1016/j.ijadhadh.2020.102629.   DOI
30 Fan, Y., Zhu, Z., Zhao, Y., Zhou, C. and Zhang, X. (2019), "The effects of some parameters on perforation tip initiation pressures in hydraulic fracturing", J. Pet. Sci. Eng., 176, 1053-1060. https://doi.org/10.1016/j.petrol.2019.02.028.   DOI
31 Dai, F., Chen, R., Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", Int. J. Rock Mech. Min. Sci., 47(4), 606-613. https://doi.org/10.1016/j.ijrmms.2010.04.002.   DOI
32 Du, S., Li, D., Yu, W., Zhang, J. and Liu, F. (2020), "Stability Analysis and Support Control for a Jointed Soft Rock Roadway Considering Different Lateral Stresses", Geotech. Geol. Eng., 38(1), 237-253. https://doi.org/10.1007/s10706-019-01013-w.   DOI
33 Aliha, M.R.M. and Ayatollahi, M.R. (2014), "Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading - A statistical approach", Theor. Appl. Fract. Mech., 69, 17-25. https://doi.org/10.1016/j.tafmec.2013.11.008.   DOI
34 Tang, C., Tang, S., Gong, B. and Bai, H. (2015), "Discontinuous deformation and displacement analysis: From continuous to discontinuous", Sci. China-Technol. Sci., 58(9), 1567-1574. https://doi.org/10.1007/s11431-015-5899-8.   DOI
35 Li, D., Han, Z., Zhu, Q., Zhang, Y. and Ranjith, P.G. (2019b), "Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles", Int. J. Rock Mech. Min., 117, 162-170. https://doi.org/10.1016/j.ijrmms.2019.03.011.   DOI
36 Ying, P., Zhu, Z., Zhou, L., Fan, Y., Dong, Y. and Wang, M. (2020), "Testing Method of Rock Dynamic Fracture Toughness Using Large Single Cleavage Semicircle Compression Specimens", J. Test. Eval., 48(5), 20170702. https://doi.org/10.1520/JTE20170702.   DOI
37 Zhou, L., Zhu, Z., Dong, Y. and Niu, C. (2020), "Investigation of dynamic fracture properties of multi-crack tunnel samples under impact loads", Theor. Appl. Fract. Mech., 109, 102733. https://doi.org/10.1016/j.tafmec.2020.102733.   DOI
38 Zhou, L., Zhu, Z., Liu, B. and Fan, Y. (2018a), "The effect of radial cracks on tunnel stability", Geomech. Eng., 15(2), 721-728. https://doi.org/10.12989/gae.2018.15.2.721.   DOI
39 Huang, Y.H., Yang, S.Q. and Tian, W.L. (2019), "Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures", Theor. Appl. Fract. Mech., 99, 118-130. https://doi.org/10.1016/j.tafmec.2018.11.013.   DOI
40 Li, D., Han, Z., Sun, X., Zhou, T. and Li, X. (2019a), "Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests", Rock Mech. Rock Eng., 52(6), 1623-1643. https://doi.org/10.1007/s00603-018-1652-5.   DOI
41 Li, G., Cheng, X.F., Pu, H. and Tang, C.A. (2019c), "Damage smear method for rock failure process analysis", J. Rock Mech. Geotech. Eng., 11(6), 1151-1165. https://doi.org/10.1016/j.jrmge.2019.06.007.   DOI
42 Zhou, Q., Zhu, Z., Wang, X., Zhou, J., Lang, L. and Zhang, X. (2019), "The effect of a pre-existing crack on a running crack in brittle material under dynamic loads", Fatigue Fract. Eng. Mater. Struct., 42(11), 2544-2557. https://doi.org/10.1111/ffe.13105.   DOI
43 Zhu, Z., Li, Y., Xie, J. and Liu, B. (2015), "The effect of principal stress orientation on tunnel stability", Tunn. Undergr. Sp. Tech., 49, 279-286. https://doi.org/10.1016/j.tust.2015.05.009.   DOI
44 Zhu, Z., Xie, H. and Ji, S. (1997), "The mixed boundary problems for a mixed mode crack in a finite plate", Eng. Fract. Mech., 56(5), 647-655. https://doi.org/10.1016/S0013-7944(96)00123-3.   DOI
45 Zuo, Y., Zhang, Q., Xu, T., Liu, Z., Qiu, Y. and Zhu, W. (2015), "Numerical Tests on Failure Process of Rock Particle under Impact Loading", Shock Vib., 2015, 1-12. https://doi.org/10.1155/2015/678573.   DOI
46 Wu, Q., Weng, L., Zhao, Y., Guo, B. and Luo, T. (2019), "On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates", Eng. Geol., 253, 94-110. https://doi.org/10.1016/j.enggeo.2019.03.014.   DOI
47 Gregoire, D., Maigre, H. and Combescure, A. (2009), "New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials", Int. J. Solids Struct., 46(18-19), 3480-3491. https://doi.org/10.1016/j.ijsolstr.2009.06.003.   DOI
48 Sarfarazi, V., Haeri, H. and Fatehi, M. (2017), "Fracture Mechanism of Brazilian Discs with Multiple Parallel Notches Using PFC2D", Period. Polytech. Civ. Eng., https://doi.org/10.3311/PPci.10310.   DOI
49 Zhou, L., Zhu, Z., Qiu, H., Zhang, X. and Lang, L. (2018b), "Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens", Int. J. Rock Mech. Min. Sci., 112, 25-34. https://doi.org/10.1016/j.ijrmms.2018.10.011.   DOI