• 제목/요약/키워드: dynamic equilibrium configuration

검색결과 8건 처리시간 0.023초

조속기의 동적 평형위치 해석 (Analysis of Dynamic Equilibrium Configuration of Speed Governor)

  • 강주석
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.4733-4738
    • /
    • 2013
  • 본 연구에서는 구속조건을 가진 기계계의 동적 평형위치를 다물체 동역학 해석방법을 이용하여 계산하였다. 다물체계에서 얻어지는 시간 구속조건을 가진 구속조건식과 동역학식으로부터 독립좌표계로 이루어진 동적평형식을 유도하였다. 동적 평형식은 구속조건식과 함께 비선형 대수방정식의 형태로서 Newton-Raphson 방법을 이용하여 수치해를 구하였다. 제안된 동적 평형 계산 방법을 조속기에 적용하여 동적 평형위치를 구하였다. 해석결과는 상용 프로그램의 동역학해석을 통한 평형위치의 결과와 비교하여 타당성을 검증하였다. 조속기의 회전 각속도에 대한 평형위치를 계산하고 설계 파라미터에 대한 평형위치의 영향을 분석하였다.

Large displacement Lagrangian mechanics -Part II - Equilibrium principles

  • Underhill, W.R.C.;Dokainish, M.A.;Oravas, G.Ae.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.91-107
    • /
    • 1996
  • In Lagrangian mechanics, attention is directed at the body as it moves through space. Each body point is identified by the position it would have if the body were to occupy an arbitrary reference configuration. A result of this approach is that the analyst often describes the body by using quantities that may involve more than one configuration. This is particularly common in incremental calculations and in changes of the choice of reference configuration. With the rise of very powerful computing machinery, the popularity of numerical calculation has become great. Unfortunately, the mechanical theory has been evolved in a piecemeal fashion so that it has become a conglomeration of differently developed patches. The current work presents a unified development of the equilibrium principle. The starting point is the conservation of momentum. All details of configuration are shown. Finally, full dynamic and static forms are presented for total and incremental work.

파랑하중 및 지진하중을 받는 해양케이블의 동적 비선형 해석 (Dynamic Nonlinear Analysis of Marine Cables Under Wave Force and Earthquake Force)

  • 김문영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.292-299
    • /
    • 1999
  • In order to investigate dynamic behaviors of marine cables under wave and earthquake forces a geometric nonlinear. F, E formulation of marine cables is presented and tangent stiffness and mass matrices for the isoparametric cable element are derived, The initial equilibrium state of cables subjected to self -weights and current forces is determined and free vibration and dynamic nonlinear analysis of cable structures under additional environmental loads are performed based on the initial configuration Challenging examples are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate dynamic nonlinear behaviors of marine cables.

  • PDF

Displacement tracking of pre-deformed smart structures

  • Irschik, Hans;Krommer, Michael;Zehetner, Christian
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.139-154
    • /
    • 2016
  • This paper is concerned with the dynamics of hyperelastic solids and structures. We seek for a smart control actuation that produces a desired (prescribed) displacement field in the presence of transient imposed forces. In the literature, this problem is denoted as displacement tracking, or also as shape morphing problem. One talks about shape control, when the displacements to be tracked do vanish. In the present paper, it is assumed that the control actuation is provided by imposed eigenstrains, e.g., by the electric field in piezoelectric actuators, or by thermal actuators, or via analogous physical effects, such as magneto-striction or pre-stress. Structures with a controlled eigenstrain-type actuation belong to the class of smart structures. The action of the eigenstrains can be conveniently characterized by actuation stresses. Our theoretical derivations are performed in the framework of the theory of small incremental dynamic deformations superimposed upon a statically pre-deformed configuration of a hyperelastic solid or structure. We particularly ask for a distribution of incremental actuation stresses, such that the incremental displacements follow exactly a prescribed trajectory field, despite the imposed incremental forces are present. An exact solution of this problem is presented under the assumption that the actuation stresses can be tailored freely and applied everywhere within the body. Extending a Neumann-type solution strategy, it is shown that the actuation stresses due to the distributed control eigenstrains must satisfy certain quasi-static equilibrium conditions, where auxiliary body-forces and auxiliary surface tractions are to be taken into account. The latter auxiliary loading can be directly computed from the imposed forces and from the desired displacement field to be tracked. Hence, despite the problem is a dynamic one, a straightforward computation of proper actuator distributions can be obtained in the framework of quasi-static equilibrium conditions. Necessary conditions for the functioning of this concept are presented. Particularly, it must be required that the intermediate configuration is infinitesimally superstable. Previous results of our group for the case of shape control and displacement tracking in linear elastic structures are included as special cases. The high potential of the solution is demonstrated via Finite Element computations for an irregularly shaped four-corner plate in a state of plain strain.

조류력을 받는 해양케이블의 자유진동해석 (Free Vibrations of Ocean Cables under Currents)

  • 김문영;김남일;윤종윤
    • 한국해안해양공학회지
    • /
    • 제11권4호
    • /
    • pp.231-237
    • /
    • 1999
  • 다절점 케이블요소를 이용하여 조류하중을 받는 해양 케이블의 자유진동해석을 수행한다. 등매개 곡선 케이블요소(isoparametric cable element)의 접선강성행렬과 질량행렬을 유도하고, 하중증분법을 이용하여 지점 변위를 일으키고 자중, 부력, 그리고 조류력을 받는 케이블의 초기평형 상태를 결정한다. 초기의 정적평형상태를 기준으로 부가질량을 고려한 해양케이블의 자유진동해석을 수행한다. 수중케이블의 자유진동해석을 통하여 얻은 해석결과와 기존의 문헌의 결과를 비교, 검토함으로써 본 논문에서 제시한 이론 및 해석방법의 타당성을 입증한다.

  • PDF

쉘 구조물의 비선형 동적응답 해석을 위한 Algorithm에 관한 연구 (A Study on the Algorithm for Nonlinear Dynamic Response Analysis of Shell Structure)

  • 최찬문
    • 수산해양기술연구
    • /
    • 제32권2호
    • /
    • pp.164-176
    • /
    • 1996
  • The main intention of this paper is to develop and compare the algorithm based on finite element procedures for nonlinear transient dynamic analysis which has combined effects of material and geometric nonlinearities. Incremental equilibrium equations based on the principle of virtual work are derived by the finite element approach. For the elasto - plastic large deformation analysis of shells and the determination of the displacement-time configuration under time-varying loads, the explicit, implicit and combined explicit-implicit time integration algorithm is adopted. In the time structure is selected and the results are compared with each others. Isoparametric 8-noded quadrilateral curved elements are used for shell structure in the analysis and for geometrically nonlinear elastic behaviour, a total Lagrangian coordinate system was adopted. On the other hands, material nonlinearity is based on elasto-plastic models with Von-Mises yield criteria. Thus, the combined explicit-implicit time integration algorithm is benefit in general case of shell structure, which is the result of this paper.

  • PDF

3차원 케이블망의 정적 비선형 해석 및 초기 평형상태의 결정 (Non-linear Static Analysis and Determination of Initial Equilibrium States of Space Cable Nets)

  • 김문영;김남일
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.134-141
    • /
    • 1997
  • A geometrically non-linear finite element formulation of spatial cable networks is presented using three cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element, and the isoparametric cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static non-linear behaviors of cable nets.

  • PDF

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.