• Title/Summary/Keyword: dynamic elasticity

Search Result 420, Processing Time 0.022 seconds

A new solution for dynamic response of FG nonlocal beam under moving harmonic load

  • Hosseini, S.A.H.;Rahmani, O.;Bayat, S.
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.185-200
    • /
    • 2022
  • A Closed-form solution for dynamic response of a functionally graded (FG) nonlocal nanobeam due to action of moving harmonic load is presented in this paper. Due to analyzing in small scale, a nonlocal elasticity theory is utilized. The governing equation and boundary conditions are derived based on the Euler-Bernoulli beam theory and Hamilton's principle. The material properties vary through the thickness direction. The harmonic moving load is modeled by Delta function and the FG nanobeam is simply supported. Using the Laplace transform the dynamic response is obtained. The effect of important parameters such as excitation frequency, the velocity of the moving load, the power index law of FG material and the nonlocal parameter is analyzed. To validate, the results were compared with previous literature, which showed an excellent agreement.

Vibration analysis of boron nitride nanotubes by considering electric field and surface effect

  • Zeighampour, Hamid;Beni, YaghoubTadi
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.607-620
    • /
    • 2021
  • In this paper, the vibrations of boron nitride nanotubes (BNNTs) are investigated by considering the electric field. To consider the size effect at nanoscale dimensions, the surface elasticity theory is exploited. The equations of motion of the BNNTs are obtained by applying Hamilton's principle, and the clamped-guided boundary conditions are also considered. The governing equations and boundary conditions are discretized using the differential quadrature method (DQM), and the natural frequency is obtained by using the eigenvalue problem solution. The results are compared with the molecular dynamic simulation in order to validate the accurate values of the surface effects. In the molecular dynamics (MD) simulation, the potential between boron and nitride atoms is considered as the Tersoff type. The Timoshenko beam model is adopted to model BNNT. The vibrations of two types of zigzag and armchair BNNTs are considered. In the result section, the effects of chirality, surface elasticity modulus, surface residual tension, surface density, electric field, length, and thickness of BNNT on natural frequency are investigated. According to the results, it should be noted that, as an efficient non-classical continuum mechanic approach, the surface elasticity theory can be used in scrutinizing the dynamic behavior of BNNTs.

Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash (석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • 성찬용;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF

Analysis of system dynamic influences in robotic actuators with variable stiffness

  • Beckerle, Philipp;Wojtusch, Janis;Rinderknecht, Stephan;von Stryk, Oskar
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.711-730
    • /
    • 2014
  • In this paper the system dynamic influences in actuators with variable stiffness as contemporary used in robotics for safety and efficiency reasons are investigated. Therefore, different configurations of serial and parallel elasticities are modeled by dynamic equations and linearized transfer functions. The latter ones are used to identify the characteristic behavior of the different systems and to study the effect of the different elasticities. As such actuation concepts are often used to reach energy-efficient operation, a power consumption analysis of the configurations is performed. From the comparison of this with the system dynamics, strategies to select and control stiffness are derived. Those are based on matching the natural frequencies or antiresonance modes of the actuation system to the frequency of the trajectory. Results show that exclusive serial and parallel elasticity can minimize power consumption when tuning the system to the natural frequencies. Antiresonance modes are an additional possibility for stiffness control in the series elastic setup. Configurations combining both types of elasticities do not provide further advantages regarding power reduction but an input parallel elasticity might enable for more versatile stiffness selection. Yet, design and control effort increase in such solutions. Topologies incorporating output parallel elasticity showed not to be beneficial in the chosen example but might do so in specific applications.

Prediction of the dynamic properties in rubberized concrete

  • Habib, Ahed;Yildirim, Umut
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.185-197
    • /
    • 2021
  • Throughout the previous years, many efforts focused on incorporating non-biodegradable wastes as a partial replacement and sustainable alternative for natural aggregates in cement-based materials. Currently, rubberized concrete is considered one of the most important green concrete materials produced by replacing natural aggregates with rubber particles from old tires in a concrete mixture. The main benefits of this material, in addition to its importance in sustainability and waste management, comes from the ability of rubber to considerably damp vibrations, which, when used in reinforced concrete structures, can significantly enhance its energy dissipation and vibration behavior. Nowadays, the literature has many experimental findings that provide an interesting view of rubberized concrete's dynamic behavior. On the other hand, it still lacks research that collects, interprets, and numerically investigates these findings to provide some correlations and construct reliable prediction models for rubberized concrete's dynamic properties. Therefore, this study is intended to propose prediction approaches for the dynamic properties of rubberized concrete. As a part of the study, multiple linear regression and artificial neural networks will be used to create prediction models for dynamic modulus of elasticity, damping ratio, and natural frequency.

A Study on Dynamic Characteristic of Robot Cables (로봇 케이블의 동적 특성에 관한 연구)

  • Kim, Jin Kyu;Kim, Jae Bong;Kang, Dae Sun;Choi, Woong Sub;Kim, Moon Young;Lee, Sang Beom;Yim, Hong Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.495-499
    • /
    • 2014
  • In this study, the finite element modeling for the signal cable and pneumatic hose of the industrial robot is developed. The modulus of elasticity of signal cable and pneumatic hose is predicted by deflection test. Finite element model for the signal cable and pneumatic hose is developed by using the modulus of elasticity obtained from the tests. The developed finite element model is estimated through the vibration analysis. This study shows that the developed finite element model can be effectively utilized in the dynamic analysis.

  • PDF

Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates

  • Asemi, Kamran;Salehi, Manouchehr;Sadighi, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1067-1089
    • /
    • 2014
  • In this paper, three dimensional static and dynamic analyses of two dimensional functionally graded annular sector plates have been investigated. The material properties vary through both the radial and axial directions continuously. Graded finite element and Newmark direct integration methods have been used to solve the 3D-elasticity equations in time and space domains. The effects of power law exponents and different boundary conditions on the behavior of FGM annular sector plate have been investigated. Results show that using 2D-FGMs and graded elements have superiority over the homogenous elements and 1D-FGMs. The model has been compared with the result of a 1D-FGM annular sector plate and it shows good agreement.

A Time-Domain Finite Element Formulation for Transient Dynamic Linear Elasticity (과도 선형 동탄성 문제의 시간영역 유한요소해석)

  • Sim, U-Jin;Lee, Seong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.574-581
    • /
    • 2001
  • Transient linear elastodynamic problems are numerically analyzed in a time-domain by the Finite Element Method, for which the variational formulation based upon the equations of motion in convolution integral is newly derived. This formulation is implicit and does not include the time derivative terms so that the computation procedure is simple and less assumptions are required comparing to the conventional time-domain dynamic numerical algorithms, being able to get the improved numerical accuracy and stability. That formulation is expanded using the semi-discrete approximation to obtain the finite element equations. In the temporal approximation, the time axis is divided equally and constant and linear time variations are assumed in those intervals. It is found that unconditionally stable numerical results are obtained in case of the constant time variation. Some numerical examples are given to show the versatility of the presented formulation.

Dynamic Test method to Determine Modulus of Elasticity of Sound Insulating Coat (현장 타설용 고분자 감쇠재의 탄성 계수를 측정하기 위한 실험 기법)

  • Yemam, Dinberu Molla;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.92-93
    • /
    • 2015
  • The main purpose of this paper is to present the dynamic test method developed for measuring the elastic modulus of sound insulating coat. The test setup was devised based on the theoretical natural frequency of a simply-supported beam subject to free transverse vibration. A stainless steel beam was tested and the result showed a good compliance with the standard value listed in literatures. The result indicates that the test set up can serve as a quick, economical and suitable scheme to test non self-supporting materials.

  • PDF

An Experimental Study on Nondestructive Properties of Crushed Oyster Shell Concrete (패분 콘크리트의비파괴 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.93-98
    • /
    • 2000
  • This study is performed to evalute experimentally the nondestructive properties on the concrete that is treated with crushed oyster shell powder of 0.15m or smaller in diameter. The ultrsonic pulse velocity of crushed oyster shell concrete(COSC) is in the range of 4.110-4.267m/s, and the dynamic modulus of elasticity of COSC range from 288$\times$10$^3$ to 318 $\times$10$^3$kgf/$\textrm{cm}^2$. The ultrasonic pulse velocity and dynamic modulus of elasticity are similar to those of normal portland cement concrete. The highest ultrasonic pulse velocity and dynamic modulus of COSC are measured at the 2.5% addition rate by weight of crushed oyster shell powder. The acid-resistance in increased of the content of crushed oyster shell powder. The acid-resistance of COSC with 15% addition rate by weight of crushed oyster shell power is 1.6 times greater than that of normal portland cement concrete. It is concluded that the addition of crushed oyster shell powder to normal portland cement concrete contributed to improve the nondestructive properties of concrete.

  • PDF