• Title/Summary/Keyword: dynamic contact force

Search Result 371, Processing Time 0.032 seconds

Contact control of a probing manipulator contacting with plastically deformable objects (소성변형가능한 물체와 접촉하는 프로브 매니퓰레이터의 접촉제어)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.221-224
    • /
    • 1996
  • Since impact phenomenon is highly nonlinear, the analysis and control of the contact motion has been a challenging subject. Various researches have been carried out mostly for the contact of a rigid robotic manipulator with a stiff and elastic environment. This paper is motivated by a new contact task: the in-circuit test of a printed circuit board. In this process, high speed contact occurs between a rigid probing manipulator and a plastically deformable work environment. A new dynamic model of the impact controlled probing task has been proposed, considering contact with the plastically deformable object. Approaching velocity conditions to avoid an excess of the allowable penetration depth and control the generated impact force properly are derived from the proposed model. The results of the simulation studies are made for various probing conditions and show the validity of the proposed model.

  • PDF

Study on Dynamic Crawling of The Five-bar Planar Mechanism (5절 평면형 메커니즘의 동적 포복에 관한 연구)

  • Lee J.H.;Lim N.S.;Kim W.K.;Yi B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1045-1049
    • /
    • 2005
  • In this paper, the dynamic crawling of a five-bar planar mechanism is investigated. One complete cycle of the crawling selected in this study consists of four different steps, i) sliding at one contact point between the mechanism and the ground, ii) changing its configuration without sliding at two contact points, iii) sliding at the other contact point, and iv) again changing its configuration without sliding at two contact points. In this type of crawling, the crawling mechanism maintains the shape of the parallel structure throughout a complete crawling cycle. The modeling algorithm for serial manipulators proposed by M. Thomas and et al.[1] is employed by introducing imaginary joints and links which represent the contact interfaces between the one end of the mechanism and the ground, while the other end of the mechanism is regarded as an end-effector of the imaginary serial manipulator which treats the reaction force and torque at the contact point as external forces. Then, a complete cycle of dynamic crawling of the mechanism is investigated through various computer simulations. The simulation result show that the stable crawling characteristics of the mechanism could be secured when the proper configurations depending on specified frictional constraints are met.

  • PDF

Analysis of Suspension State Matrix to Improve L/UL Performance (로드/언로드 성능향상을 위한 서스펜션 상태행렬의 해석)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Park, Kyung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1272-1275
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. Main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short load and unload process. In this paper, we focus on state matrix, pitch static attitude (PSA), roll static attitude (RSA), loading/unloading contour (LC/ULC), impact force and contact. Stability of slider is mainly determined by PSA and RSA. State matrix by PSA and RSA is also important indicator. Therefore we analyze state matrix of SFF HDD suspension through the LC/ULC.

  • PDF

Robust Control of a Haptic Interface Using LQG/LTR (LQG/LTR을 이용한 Haptic Interface의 강인제어)

  • Lee, Sang-Cheol;Park, Heon;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.757-763
    • /
    • 2002
  • A newly designed haptic interface enables an operator to control a remote robot precisely. It transmits position information to the remote robot and feeds back the interaction force from it. A control algorithm of haptic interface has been studied to improve the robustness and stability to uncertain dynamic environments with a proposed contact dynamic model that incorporates human hand dynamics. A simplified hybrid parallel robot dynamic model fur a 6 DOF haptic device was proposed to from a real time control system, which does not include nonlinear components. LQC/LTR scheme was adopted in this paper for the compensation of un-modeled dynamics. The recovery of the farce from the remote robot at the haptic interface was demonstrated through the experiments.

Dynamic Analysis of a Body Moving on a Flexible Structure (유연한 구조물 위를 주행하는 물체의 동역학적 해석)

  • 이기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1674-1684
    • /
    • 1994
  • An efficient iterative method is presented for the dynamic analysis of bodies moving on flexible structures. In contrast to traditional approaches, the nominal motion of the body is considered here as an unknown. The correct contact forces between the bodies and the flexible structures are computed by an iterative method reducing the specially defined error vectors to zero, and thus satisfying the constraints between the bodies and the structures. Even thought only simple equations of motions and simple time integrators are adopted, the correct solutions are economically obtained and the Timoshenko paradox is completely resolved. Numerical simulations are conducted demonstrate the accuracy and reliability of the solution and to compare the results with the reference.

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.

Forced vibration of surface foundation on multi-layered half space

  • Chen, Lin
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.623-648
    • /
    • 2015
  • A numerical approach is presented for the analysis of the forced vibration of a rigid surface foundation with arbitrary shape. In the analysis, the foundation is discretized into a number of sub squaree-lements. The dynamic response within each sub-element is described by the Green's function, which is obtained by the Fourier-Bessel transform and Precise Integration Method (PIM). Incorporating the displacement boundary condition and force equilibrium of the foundation, it obtains a system of linear algebraic equation in terms of the contact forces within each sub-element. Solving the equation leads to the desired dynamic impedance functions of the foundation. Numerical results are obtained for foundation not only with simple geometrical configurations, such as rectangular and circular foundation, but also the case of irregularly shaped foundation. Several comparisons between the proposed approach and other methods are made. Very good agreement is reached. Also, parametric studies are carried out on the dynamic response of foundation. Addressed in this study are the effects of Poisson's ratio, material damping and contact condition of soil-foundation interface. Several conclusions are drawn the significance of the factors.

Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model (집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.

Study on Multibody Dynamic Analysis and Durability of Heavy Load Bucket Roller Chain System (고하중용 버킷 롤러체인 시스템의 다물체 동역학 해석 및 내구성 연구)

  • Kim, Chang Uk;Park, Jin Chul;Lee, Dong Woo;Song, Jung Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.919-925
    • /
    • 2016
  • In this study, multibody dynamic and mechanical analyses were conducted for the structure of roller chain bucket elevator system. The fatigue life of the roller chain elevator system was determined under static and fatigue loadings. Results of multibody dynamic analysis suggested that the maximum contact force occurred at the drive sprocket engagement point with the roller chain due to maximum tension. Fatigue analysis results suggest that the high load roller chain system is durable and safe because its life time is more than 700,000 cycles, close to its designed value (1,000,000 cycle). However, the contact portion of plate and pin needed a safety factor. The dynamic analysis of the heavy load roller chain was conducted with a multibody dynamic analysis program. The results obtained in this study can be utilized for dynamic analysis of roller chain systems in all industries.

A Hierarchical Contact Searching Algorithm in Sheet Forming Analysis (박판성형공정해석에서의 계층적 접촉탐색 알고리즘 적용)

  • 김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.22-25
    • /
    • 1999
  • A dynamic explicit finite element code for simulating sheet forming processes has been developed The code utilises the discrete Kirchhoff shell element and contact force is treated by a conventional penalty method. In order to reduce the computational cost a new and robust contact searching algorithm has been developed and implemented into the code. in the method a hierarchical structure of tool segments called a tree structure is built for each tool at the initial stage of the analysis Tree is built in a way to divide a trunk to 8 sub-trunk 2 in each direction until the lowest level of the tree(leaf) contains exactly one segment of the tool. In order to have a well-balanced tree each box on each sub level contains one eighth of the segments. Then at each time step contact line from a node comes out of the surface of the tool. Simulation of various sheet forming processes were performed to verify the validity of the developed code with main focus on he usefulness of the developed contact searching algorithm.

  • PDF