• 제목/요약/키워드: dynamic contact angle

검색결과 157건 처리시간 0.021초

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

핀-관 열교환기에서의 핀의 물 접촉각이 응축잔수량에 미치는 영향 (The Effect of Water Contact Angles of the Fin Surfaces of the Fin-and-Tube Heat Exchangers on the Water Hold-up)

  • 신종민;이남교;한성주;하삼철
    • 설비공학논문집
    • /
    • 제13권6호
    • /
    • pp.490-496
    • /
    • 2001
  • An experimental study on the behavior of the water hold-up by condensation of a fin-and-tube heat exchanger with regard to the surface characteristics, i.e., contact angle, was conducted. The static and dynamic contact angles were measured, and condensation experiments were conducted. Flow patterns on the fins with different surface characteristics were visualized. Results showed that the static contact angle is proportional to the dynamic contact angle within the range of this study. The water hold-up of the heat exchanger increases as the static or dynamic contact angle of its surfaces increases. Existence of transition of flow patterns was found as the static or dynamic angle increase. Due to the transition in the flow patterns, changes in the gradient of the water hold-up is occurred around the static angle of 8$0^{\circ}C$.

  • PDF

레벨셋 기법을 이용한 전기습윤 현상의 동적 접촉각 문제에 대한 수치해석 (NUMERICAL ANALYSIS OF DYNAMIC CONTACT ANGLE PROBLEMS IN ELECTROWETTING WITH LEVEL SET METHOD)

  • 박준권;강관형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.155-158
    • /
    • 2009
  • We developed a numerical method to analyze the contact-line problems, incorporating a dynamic contact angle model. We used level set method to capture free surface. The method is applied to the analysis of dynamic behavior of a droplet in DC electrowetting. The result is compared with an experimental data and result of perturbation method.

  • PDF

Measurement of Dynamic Contact Angle of Yarn for Evaluation of Fabric Comfort Performance

  • Hong, Cheol-Jae
    • 감성과학
    • /
    • 제5권3호
    • /
    • pp.67-74
    • /
    • 2002
  • Testing device was newly designed and built to measure the dynamic contact angle. The measurement was made using microscope interfaced with computerized image analysis system while the dynamic condition being controled using Instron. As specimens for the experiment, two different types of fibers, i.e., hydrophilic and hydrophobic, were prepared. In case of hydrophilic fiber, the increase of twist level gave the increase of contact angle. However, in hydrophobic yarn the increase of twist level gave the decrease of contact angle. When saline was used as a telling liquid, the increase of the concentration gave the increase of contact angle. The results rationalized clearly on the basis of known concepts could be used in designing fabric structure for the improvement of comport performance.

  • PDF

이동하는 소수성 및 친수성 표면에서 액적의 동접촉각 측정 (Measurement of Dynamic Contact Angle of Droplet on Moving Hydrophobic and Hydrophilic Surfaces)

  • 송준규;김형대
    • 한국가시화정보학회지
    • /
    • 제16권2호
    • /
    • pp.16-22
    • /
    • 2018
  • This study investigates dynamic wetting behaviors of a water droplet placed on surfaces with different wettability and nano-structures. Hydrophobic and hydrophilic properties on as-received silicon wafers were prepared by fabricating thin films of hydrophobic polymer and hydrophilic nanoparticles via layer-by-layer coating. Dynamic advancing contact angle of droplets on the prepared surfaces was measured at various moving velocities of triple contact line with a high-speed video camera. As advancing velocity of triple contact line increased, dynamic advancing contact angle on the as-received silicon and hydrophobic surfaces sharply increased up to $80^{\circ}$ in the range of order of mm/sec whereas the SiO2 nanoparticle-coated hydrophilic surface maintained low contact angles of about $30^{\circ}$ and then it gradually increased in the velocity range of order of hundred mm/sec. The improved dynamic wetting ability observed on the nanostructured hydrophilic surface can benefit the performance of various phase-change heat transfer phenomena under forced convective flow.

마이크로 원형 모세관에서 계면 이동 현상의 측정 (Measurements of Flow Meniscus Movement in a Micro Capillary Tube)

  • 이석종;성재용;이명호
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a high-speed imaging and an image processing technique have been applied to detect the position of a meniscus as a function of time in the micro capillary flows. Two fluids with low and high viscosities, ethylene glycol and glycerin, were dropped into the entrance well of a circular capillary tube. The filling times of the meniscus in both cases of ethylene glycol and glycerin were compared with the theoretical models - Washburn model and its modified model based on Newman's dynamic contact angle equation. To evaluate the model coefficients of Newman's dynamic contact angle, time-varying contact angles under the capillary flows were measured using an image processing technique. By considering the dynamic contact angle, the estimated filling time from the modified Washburn model agrees well with the experimental data. Especially, for the lower-viscosity fluid, the consideration of dynamic contact angle is more significant than for the higher-viscosity fluid.

Wetting Properties of Biopolyester Films Prepared by Thermo-Compression Method

  • Rhim, Jong-Whan;Hong, Seok-In
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.234-237
    • /
    • 2007
  • Water resistance of three biopolyester films, such as poly-L-lactate (PLA), poly-hydroxybutyrate-co-valerate (PHBV), and Ecoflex, and low density polyethylene (LDPE) film was investigated by measuring contact angle of various probe liquids on the films. The properties measured were initial contact angle of water, dynamic change of the water contact angle with time, and the critical surface energy of the films. Water contact angle of the biopolyester films ($57.62-68.76^{\circ}$) was lower than that of LDPE film ($85.19^{\circ}$) indicating biopolyester films are less hydrophobic. The result of dynamic change of water contact angle also showed that the biopolyester films are less water resistant than LDPE film, but much more water resistant than cellulose-based packaging materials. Apparent critical surface energy for the biopolyester films (35.15-38.55 mN/m) was higher than that of LDPE film (28.59 mN/m) indicating LDPE film is more hydrophobic.

복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교 (Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites)

  • 권동준;김종현;박종만
    • 접착 및 계면
    • /
    • 제23권3호
    • /
    • pp.87-93
    • /
    • 2022
  • 섬유와 기지 간 계면 특성을 분석하기 위해 일반적으로 접촉각을 활용하여 계산된 접착일을 활용한다. 접촉각 측정 방식으로 동적접촉각과 정적접촉각이 있으며, 본 논문에서는 보다 정확도가 높은 접촉각 측정 방법이 무엇인지 모색하였다. 각각 4가지 종류의 에폭시 수지와 유리섬유를 사용하였고, 유리섬유와 에폭시의 표면 에너지 결과를 기반으로 접착일, Wa을 계산하여 계면강도를 예측하였다. 접착일과 계면 전단강도는 이론상 비례관계이며, 이를 확인하기 위해 조성이 다른 에폭시와 유리섬유 간의 계면강도를 마이크로드롭렛 시험법을 이용하여 측정하였다. 정적접촉각 결과의 경우 접착일과 계면 전단강도 사이에는 일치하지 않는 경향을 보였다. 이는, 동적 접촉각 평가 방법은 정적접촉각에 비해, 드롭 크기에 따른 최소 표면적을 이루는 에러와 미니스커서에서 접선 측정에 따른 에러를 최소화할 수 있다는 점이다.

박판 궤도륜 볼베어링의 특성해석 및 피로수명 평가 (Analysis and Fatigue Life Evaluation of the Ball Bearing with Thin-Section Raceways)

  • 김완두
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.48-55
    • /
    • 1997
  • The ball bearing with thin-section raceways which is much lighter than other conventional bearings used in most modem passenger cars and small tracks. The important design parameters of this bearing is the groove radius of raceways, the diametral clearance, the free contact angle and so on. The optimal value of these parameters were determined by considering the dynamic load capacity, the contact angle and the calculated fatigue life. The contact angle between a ball and raceways was calculated by considering the local contact deformation and the structural deformation of thin-section raceways which was estimated by FEM. The raceways were made by means of the press-forming process. The fatigue life tester was designed and manufactured. The fatigue life test was executed and the reliability of this bearing was confirmed.

레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석 (ANALYSIS OF ELECTROWETTING DYNAMICS WITH CONSERVATIVE LEVEL SET METHOD)

  • 박준권;홍지우;강관형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.84-87
    • /
    • 2009
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models.

  • PDF