• Title/Summary/Keyword: dynamic compensator

Search Result 234, Processing Time 0.031 seconds

The Controller Design of Bi-directional DC-DC Converter for a Fuel Cell Energy Storage System (연료전지용 커패시터 충.방전을 위한 양방향 DC-DC 컨버터 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;An, Jin-Woong;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.222-228
    • /
    • 2012
  • This paper presents a design and simulation of bi-directional DC/DC boost converter for a fuel cell system. In this paper, we analyze the equivalent model of both a boost converter and a buck converter. Also we propose the controller of bi-directional DC-DC converter, which has buck mode of charging a capacitor and boost mode of discharging a capacitor. In order to design a controller, we draw bode plots of the control-to-output transfer function using specific parameters and incorporate 3pole-2zero compensator in a closed loop. As a result, it has increased PM(Phase Margin) for better dynamic performance. The proposed bi-directional DC-DC converter's 3pole-2zero compensation method has been verified with computer simulation and simulation results obtained demonstrates the validity of the proposed control scheme.

  • PDF

Performance Enhancement of RMRAC Controller for Permanent Magnent Synchronous Motor using Disturbance compensator (외란보상기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응제어기의 성능개선)

  • Jin, Hong-Zhe;Lim, Hoon;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.845-851
    • /
    • 2008
  • A simple RMRAC (Robust Model Reference Adaptive Control) scheme for the PMSM (Permanent Magnent Synchronous Motor) is proposed in the synchronous frame. A current control of PMSM is the most inner loop of electro-mechanical driving systems and it requires a fast and simple control law to play a foundation role in the control hierarchy. In the proposed synchronous current model, the input signal is composed of a calculated voltage by proposed adaptive laws and real system disturbance. The gains of feed-forward and feedback controllers are estimated by the proposed modified Gradient method respectively, where the system disturbances are assumed as filtered current tracking errors. After the estimation of the system disturbances from the tracking errors, the corresponding voltage is fed forward to control input voltage to compensate for the disturbances. The proposed method is robust against high frequency disturbance and has a fast dynamic response. It also shows a good real-time performance due to it's simplicity of control structure. Through the simulations and real experiments, efficiency of the proposed method is verified.

Influence Analysis of Grid Connected Wind Power Generator by Line Constants (풍력발전 계통연계시 선로정수에 따른 계통 영향 분석)

  • Choy, Young-Do;Kwak, No-Hong;Jeon, Young-Soo;Jeon, Dong-Hoon;Han, Byung-Moon;Yun, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.249-250
    • /
    • 2008
  • 본 논문은 고창 전력품질 실증시험장에서 실 계통 연계를 위해 시험 중인 1.5M급 풍력발전 시뮬레이터의 선로정수를 PSCAD/EMTDC를 이용하여 모의하고 선로정수에 따른 풍력발전시스템이 계통에 미치는 영향을 분석하는데 중점을 두었다. 현재 고창에 설치되어있는 전력품질 실증시험장은 22.9kV 급전선에 SSTS(Synchronous Static Transfer Switch)의 한쪽 스위치로 직접 연결되어있으며 다른 한 쪽은 전력계통에서 발생되는 다양한 형태의 이벤트를 발생시키는 SSHG(Sag Swell Harmonics Generator)를 통하여 연결되어있다. 전력품질 향상기기중 하나인 DVR(Dynamic Voltage Restorer)는 SSTS의 부하쪽으로 직렬로 연결되어있으며 delta-wye 변압기를 통해 정류기 부하와 APF(Active Power Filter), 그리고 순저항부하와 유도성부하가 연결되어 있고 또한 SSHG를 통하여 연결된 배전선에는 DSTATCOM(Distribution Static Compensator)가 병렬로 연결되어있다. 본 논문에서는 고창에 있는 풍력발전 시뮬레이터와 동일하게 PSCAD/EMTDC로 구성하였으며 선로정수를 모델링 하기 위해 선로모델을 10Km, 20Km, 30Km, 40Km,로 설정하여 선로정수에 따른 계통영향을 분석하여 풍력발전 시뮬레이터에서 모의가능 한 선로정수 값을 제시한다.

  • PDF

Modeling of Power Quality Stabilization using SMES and DVR (SMES 와 DVR을 이용한 전력계통품질 안정화 시스템 모델링)

  • Park, Sung-Yeol;Jung, Hee-Yeol;Kim, A-Rong;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Kim, Hae-Jong;Seong, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2251-2252
    • /
    • 2008
  • Recently, voltage sag from sudden increasing loads is also one of the major problems inside the utility network. In order to compensate the voltage sag problem, power compensation device systems could be a good solution method. In case of voltage sag, an energy source is needed to overcome the energy loss caused by the voltage sag. Superconducting Magnetic Energy Storage (SMES) is a very promising source of this energy due to its fast response of charging and discharging time. Before constructing the power electronic delivering system for the SMES, it is necessary to simulate the system to understand its behavior. Nowadays, a lot of devices have been developed to compensate voltage sag such as Dynamic Voltage Restorer (DVR), Distribution Static Compensator (D-STATCOM) and Uninterruptible Power Supply (UPS). In this paper, focus is given only on DVR system which will be simulated by using PSCAD/EMTDC software.

  • PDF

Dynamic Decoupler Design for EGR and VGT Systems in Passenger Car Diesel Engines (승용디젤엔진 EGR 및 VGT 제어시스템의 동적특성을 고려한 Decoupler 설계 연구)

  • Hong, Seungwoo;Park, Inseok;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.182-189
    • /
    • 2014
  • This paper proposes a decoupler design method to reduce interaction between exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems in passenger car diesel engines. The EGR valve and VGT vane are respectively used to control air-to-fuel ratio (AFR) of exhaust gas and intake pressure. A plant model for EGR and VGT systems is defined by a first order transfer function plus time-delay model, and the loop interaction between these systems is analyzed using a relative normalized gain array (RNGA) method. In order to deal with the loop interaction, a design method for simplified decoupler is applied to this study. Feedback control algorithms for AFR and intake pressure are composed of a compensator using PID control method and a prefilter. The proposed decoupler is evaluated through engine experiment, and the results successfully showed that the loop interaction between EGR and VGT systems can be reduced by using the proposed decoupler. Furthermore, it presents stable performance even off from the designed operating point.

Improvement of Dynamic Characteristics of an Optical Image Stabilizer in a Compact Camera (초소형 카메라 흔들림 보정장치의 동특성 개선)

  • Song, Myeong-Gyu;Son, Dong-Hun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 2011
  • Optical image stabilization is a device to compensate the camera movement in the exposure time. The compensation is implemented by movable lens or image sensor that adjusts the optical path to the camera movement. Generally, the camera is moved by a handshake, thus the handshake is considered as an external disturbance. However, there are many other vibrations such as car and train vibration. In this paper, the optical image stabilization system in high frequency region is presented. Notch filter and lead compensator are designed and applied to improve the stability without changing the actuator. To verify the performance of the optical image stabilization system in high frequency region, the experiment equipment with moving object is established. It is confirmed that the opticalimage stabilization system does not diverge at the resonance frequency.

Design of Neural Network Controller Using RTDNN and FLC (RTDNN과 FLC를 사용한 신경망제어기 설계)

  • Shin, Wee-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.233-237
    • /
    • 2012
  • In this paper, We propose a control system which compensate a output of a main Neual Network using a RTDNN(Recurrent Time Delayed Neural Network) with a FLC(Fuzzy Logic Controller)After a learn of main neural network, it can occur a Over shoot or Under shoot from a disturbance or a load variations. In order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. We can confirm good response characteristics of proposed neural network controller by the results of simulation.

Feedback control for initially unengaged vertical comb type electrostatic scanner (초기 비결합된 수직빗살 전극형 정전 스캐너의 거동제어)

  • Lee, Byeung-Leul;Won, Jongw-Ha;Cho, Jin-Woo;Jeong, Hee-Mun;Cho, Yong-Chol;Lee, Jin-Ho;Go, Young-Chol
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.845-846
    • /
    • 2006
  • In this paper, we describe a capacitive position sensing and motion control scheme of a MEMS scanner used for laser display application. The laser displays can be made by scanning laser beams much the same way a CRT scans electron beams. So the accuracy of the scanner motion determines the quality of the displayed image. The MEMS scanner under consideration is composed of electrostatic comb electrodes with initial gap and requires large driving voltage. Due to the under-damping and nonlinear driving characteristics, the scanner motion is subject to be an unwanted oscillation. For the linear scanner motion, we devise a differential charge amplifier and phase compensator. The experimental results show that the implemented feedback control system provides sufficient electrical damping and improves the dynamic performance of the scanner.

  • PDF

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1134-1142
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT(lead (Pb) zirconia(Zr) Titanate(Ti)) based stack actuator incorporating with the PID(proportional-integral-derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.