• Title/Summary/Keyword: dynamic compensator

Search Result 234, Processing Time 0.025 seconds

Analysis of the Distribution STATCOM for Improving the power factor and Mitigation of Voltage Flicker in Real System (전압플리커 저감과 역률 보상 기능을 갖는 배전용 STATCOM의 실계통연계 운전결과 분석)

  • Oh, Kwan-Il;Jeon, Young-Soo;Park, Sang-Tae;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.245-248
    • /
    • 2000
  • This paper presents the test and operation results of the domestic demonstration of the reactive power compensation device called STATCOM (STATic COMpensator). The object of the paper is to describe the reliability of the unit based on the extensive operation databases. By controlling reactive power, the technology offers utilities the opportunity for increased efficiency and their capabilities will permit transmission planners make the best use of their existing transmission resources STATCOM is a custom power device in a way and can be used in a similar way for the dynamic compensation of power transmission systems, mitigation of voltage flicker and improving the power factor. It is shown that the STATCOM has clear advantages in areas such as: mitigation of voltage flicker and improving power factor.

  • PDF

End point and contact force control of a flexible manipulator (유연한 조작기의 끝점위치 및 접촉력 제어)

  • 최병오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.552-558
    • /
    • 1993
  • In this paper, control of a planar two-link structurally flexible robotic manipulator executing unconstrained and constrained maneuvers is considered. The dynamic model, which is obtained by using the extended Hamilton's principle and the Galerkin criterion, includes the impact force generated during the transition from unconstrained to constrained segment of the robotic task. A method is presented to obtain the linearized equations of motion in Cartesian space for use in designing the control system. The linear quadratic Gaussian with loop transfer recovery (LQG/LTR) design methodology is exploited to design a robust feedback control system that can handle modeling errors and sensor noise, and operate on Cartesian space trajectory errors. The LQG/LTR compensator together with a feedforward loop is used to control the flexible manipulator. Simulated results are presented for a numerical example.

  • PDF

ADAPTIVE CONTROL SYSTEM DESIGN BASED ON CGT ATTROACH

  • Ohtsuka, H.;Mizumoto, I.;Iwai, Z.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.189-194
    • /
    • 1994
  • Adaptive control systems based upon the command generator tracker(CGT) approach have attracted considerable interest because of the simple structure of its adaptive controller. Some attempts to such improve the adaptive control algorithm, for the sake of the application to broader class of plants, are made. Recently, Su and Sobel(1992) proposed that those schemes can be treated by an unified theory using a metasystem representation with some types of supplementary dynamics. However, in their method, it is difficult to find the dynamic compensator, which is proper and output feedback stabilizable, for the uncertain plant. This paper proposes a new design method of such supplementary dynamics and some parameters of adaptive control system for linear time invariant SISO plants. The method gives a concrete and systematic design method using only a few priori knowledge of the plant.

  • PDF

Recursive Design of Nonlinear Disturbance Attenuation Control for STATCOM

  • Liu Feng;Mei Shengwei;Lu Qiang;Goto Masno
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.262-269
    • /
    • 2005
  • In this paper, a nonlinear robust control approach is applied to design a controller for the Static Synchronous Compensator (STATCOM). A robust control dynamic model of STATCOM in a one-machine, infinite-bus system is established with consideration of the torque disturbance acting on the rotating shaft of the generator set and the disturbance to the output voltage of STATCOM. A novel recursive approach is utilized to construct the energy storage function of the system such that the solution to the disturbance attenuation control problem is acquired, which avoids the difficulty involved in solving the Hamilton-Jacobi-Issacs (HJI) inequality. Sequentially, the nonlinear disturbance attenuation control strategy of STATCOM is obtained. Simulation results demonstrate that STATCOM with the proposed controller can more effectively improve the voltage stability, damp the oscillation, and enhance the transient stability of power systems compared to the conventional PI+PSS controller.

Neurointerface Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots

  • Lee, Hyun-Dong;Watanabe, Keigo;Jin, Sang-Ho;Syam, Rafiuddin;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.330-333
    • /
    • 2005
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels.

  • PDF

A SIMPLE REACTIVE/HARMONIC COMPENSATION METHOD WITH VOLTAGE TYPE CONVERTER (전압형 컨버터를 이용한 무효/고조파 보상을 위한 선형 제어 방법)

  • Kim, Hyo-Jin;Jeong, Seung-Gi;Choi, Jae-Ho;Park, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.305-309
    • /
    • 1989
  • This paper presents a simple method to compensate reactive/harmonic current components in power lines, with voltage type current controlled converter. The method proposed differs from conventional methods in that it does not rely on explict evaluation of active power. Instead, the closed-loop control of the do link voltage of the compensator plays a major role in adjusting the compensation current. It is shown that the system can be modelled as a simple linear system, which facilitates th analytical approach to the system characteristics. The dynamic performances are examined through the digital simulation and some aspects on the controller design are discussed. Experimental results showed good agreement with the anticipate performance

  • PDF

Dynamic Model Study for the Analysis of the STATCOM Characteristics (STATCOM의 특성해석을 위한 동적모델 고찰)

  • Kim, S.H.;Won, D.J.;Han, H.G.;Lee, S.K.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1039-1041
    • /
    • 1999
  • Recently Advanced Static Var Compensators(ASVC) or STATic Synchronous COMpesator(STATCOM) has been considered as a next generation reactive power controller. [2] STATCOM is a voltage source inverter(VSI) based static VAr compensator with only small capacitors on the do side. The main function of the STATCOM is to keep the bus voltage magnitude at the desired value. [1] This paper compares the PAM STATCOM with PWM STATCOM. The characteristics and the control method of each model is analyzed. And the simulation of STATCOMs based on the above two methods was presented.

  • PDF

Position Control of Servo Systems Using Feed-Forward Friction Compensation (피드포워드 마찰 보상을 이용한 서보 시스템의 위치 제어)

  • Park, Min-Gyu;Kim, Han-Me;Shin, Jong-Min;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.508-513
    • /
    • 2009
  • Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation.

Design of Fault tolerant controller for electromagentic suspenstion system (자기부상 시스템에서의 내 고장성 제어기 설계)

  • Jang, Seok-Myeong;Sung, So-Young;Kim, In-Kun;Sung, Ho-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.70-72
    • /
    • 1999
  • Actuator (chopper) and sensors failures resulting from electric shock and mechanical vibration generating by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes the reliable output feedback controller for the electromagnetic levitation systems against actuator, air-gap sensor and acceleration sensor failures. The designed controller is an extend version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the experimental results for the proposed controller against chopper, air-gap sensor and acceleration sensor failures of electromagnetic levitation system.

  • PDF

Design of Fault Tolerant Controller for Electromagnetic Supension System (자기부상시스템에서의 내고장성 제어기 설계)

  • Seong, Ho-Gyeong;Jo, Heung-Jae;Jeong, Seok-Yeong;Seong, So-Yeong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF