• Title/Summary/Keyword: dynamic compaction

Search Result 125, Processing Time 0.023 seconds

Improvement of waste landfill by dynamic compaction method (동다짐공법에 의한 쓰레기매립지반의 개량특성 분석)

  • 정하익;곽수정
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.404-410
    • /
    • 2002
  • Dynamic compaction is an efficient ground improvement technique for loose soils and waste landfill. The improvement is obtained by controlled high energy tamping and its effects vary with the soil properties and energy input. This study demonstrated the application of dynamic compaction method for the improvement of waste landfill in construction site. Various tests and measurements such as standard penetration test, bore hole loading test, crater settlement, ground settlement, pore water pressure were peformed during dynamic compaction field test. From the field test results, the efficiency of dynamic compaction method for the improvement of waste landfill was proved.

  • PDF

Dynamic Earth Pressure of Concrete Culverts During Compaction of Backfill (콘크리트 암거에서의 뒷채움 다짐에 의한 동적토압)

  • 노한성;최영철;김성환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.435-440
    • /
    • 2000
  • It is important to pay careful attention to construction backfill for the structural integrity of concrete box culvert. The stability of the surrounding soil is important to the structural performance of most culverts. Good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials to increase the structural integrity of culvert. However structural distress of the culvert could be occur due to the excessive earth pressure by dynamic compaction load. In this study, 16 box culverts were constructed with various compaction materials and construction methods. Three types of on-site soils such as subbase, subgrade and roadbed materials were used as backfill materials in the test program. Compaction methods were adapted based on the site conditions. In most cases, dynamic compaction rollers with 10 to 16 ton weights were used and vibration speed were applied from 2400 to 2500 rpm for the great compaction energy. Some backfill compactions with good quality soils were carried out to examine the effect of EPS(Expanded Polystyrene) panels with changes of compaction thickness. This paper presents the main results of the research conducted to access the engineering performance of the backfill materials. The characteristics of earth pressures are discussed. It is observed that subgrade and roadbed materials are needed more careful compaction than subbase materials. It is shown that EPS panels are effective to mitigate dynamic lateral earth pressure on the culverts. It is also obtained that the dynamic pressure depends on the soil properties. In addition, the coefficient of dynamic earth pressure (K$\sub$dyn/=ΔP$\sub$H/ ΔP$\sub$V/) during compaction is discussed.

  • PDF

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

A Study on the Ground Improvement Effective Evaluation of Reclaimed Land Using Cone Penetration Test (CPT를 이용한 준설매립지반의 개량효과 평가에 관한 연구)

  • Kim, Jong-Kook;Chae, Young-Su;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.910-921
    • /
    • 2004
  • In this study, the pilot tests on the reclaimed land were performed in order to find the suitable construction method with dynamic compaction Type I, Type II at different dynamic energy and hydraulic hammer compaction. The estimation of the compaction through the various pilot tests was performed by the CPT-qc, SPT-N and field density tests. As the result of the pilot tests, it shows that the dynamic compaction method is better than the hydraulic hammer compaction method in the effect of the ground improvement, especially dynamic compaction Type I is much superior to others. When it comes to method for measuring the intensity of the ground, the value of the cone penetration test-resistance(qc) is much suitable for the ground. Besides, the standards for the compaction control, which showed that over 10Mpa at 0 through 5meters in the upper layer and 7Mpa at 5 through 8meters in the lower layer in the CPT-qc, could be found without discrimination of the upper road and lower road on the reclaimed land. And it also found that the intensity of the reclaimed land gets back to the original status in about 10 through 15 days.

  • PDF

Delayed compaction effect on the strength and dynamic properties of clay treated with lime

  • Turkoz, Murat
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.471-480
    • /
    • 2019
  • The constructions of engineering structures such as airports, highways and railway on clayey soils may create many problems. The economic losses and damages caused by these soils have led researchers to do many studies using different chemical additives for the stabilization of them. Lime is a popular additive used to stabilize the clayey soils. When the base course is stabilized by mixing with an additive, inevitable delays may occur during compaction due to reasons like insufficient workers, breakdown of compaction equipment, etc. The main purpose of this study is to research the effect of compaction delay time (7 days) on the strength, compaction, and dynamic properties of a clay soil stabilized with lime content of 0, 3, 6, 9, 12 and 15% by dry weight of soil. Compaction characteristics of these mixes were determined immediately after mixing, and after 7 days from the end of mixing process. Within this context, unconfined compressive strength (UCS) under the various curing periods (uncured, 7 and 28 days) and dynamic triaxial tests were performed on the compacted specimens. The results of UCS and dynamic triaxial tests showed that delayed compaction on the strength of the lime-stabilized clay soil were significantly effective. Especially with the lime content of 9%, the increase in the shear modulus (G) and UCS of 28 days curing were more prominent after 7 days mellowing period. Because of the complex forms of hysteresis loops caused by the lime additive, the damping ratio (D) values differed from the trends presented in the literature and showed a scattered relationship.

A Study on the Vibration Effect by Dynamic Compaction Method at Waste Landfill (폐기물 매립지반에서 동다짐공법에 의한 진도영향에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.141-148
    • /
    • 2001
  • Dynamic compaction is the ground improvement method by applying the impact energy. This impact energy can damage to adjacent structure in urban area. Therefore, if dynamic compaction method is applied, careful attention should be payed to surrounded structures. In this study, the method was performed in waste landfill and the frequency of vibrations were measured according to each distances, drop-heights, and vibrating directions. The measured data show that particle velocity bas low frequency and it is greatest in longitudinal direction. There was little differences between Maynes suggestion and measured data. Therefore, Maynes suggestion can be adopted if the range of vibration can be predicted. Also, It was found that minimum 45m distance is needed in order to satisfy the administrative code if dynamic compaction method is applied.

  • PDF

Analysis of Influence Parameters to Evaluate the Effective Depth of Improvement of Dynamic Compaction Method (동다짐 공법의 유효다짐깊이 결정에 영향을 주는 인자 분석)

  • Kim, Hong-Taek;Lee, Hyuk-Jin;Park, Inn-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.659-666
    • /
    • 2004
  • Dynamic compaction has evolved as an acceptable method of site improvement by treating poor soils in situ. The method is often an economical alternative for utilizing shallow foundations and preparing subgrades for construction when compared with conventional solutions. In general, the installation purpose of dynamic compaction are to increase bearing capacity and decrease differential settlement within a specified depth of improvement. This method involves the s systematically dropping large weights onto the ground surface to compact the underlying ground. The weights used on dynamic compaction projects have been typically constructed of steel plates, sand or concrete filled steel shells, and reinforced concrete. Typically, weights range from 5-20 ton and base configurations are, circular or octagonal. In this study, the effective depth of improvement is evaluated based on the numerical analysis code, the dynamic analysis of FLAC-3D program, in order to analyze the influence parameters ; ground conditions, maximum applied load and the area of compaction plate.

  • PDF

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

The Effect of Dynamic Load, Inflation Pressure and Number of Passes of Tire on Soil Compaction under the Tire (타이어의 동하중, 공기압 및 통과횟수가 토양다짐에 미치는 영향)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of three factors(dynamic load, inflation pressure and number of passes of tire) on soil compaction under the tire. The experiment were conducted with a 6.00R14 radial-ply tire for sandy loam soil using soil bin system. To evaluate the effect of three factors on soil compaction under the tire, the sinkage. density and volume of soil under the tire were measured fur the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.67kPa), and for three different number of passes(1, 3 and 5). The results of this study can be summarized as follows : 1. As dynamic load, inflation pressure and number of passes of the tire increased, soil sinkage and density increased. and volume of soil decreased. Thus increase in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2. The effect of tire inflation pressure on sinkage. density and volume of soil under the tire was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load was more important factor affecting soil compaction in comparison to the inflation pressure of tire. 3. The effect of three different factors on sinkage, density and volume of soil decreased as the soil depth increase. Consequently, it was fecund that soil compaction at a shallow depth in soil was larger than that at deep place in soil.

Applicability of Dynamic Compact Pilot Test on Waste Landfill (폐기물 매립장에서 동다짐공법의 적용성에 관한 연구)

  • 천병식;임병수;김명진
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.418-425
    • /
    • 2000
  • In this study, the evaluation for utilization of waste landfill was performed by field test to use waste landfill as construction site(Nangido in Seoul). The site where dynamic compaction test was carried out was divided by 4 yards. Yard 1, 2 were not eliminated widening of cover soil and Yard 3, 4 were eliminated it. Dynamic Compaction Pilot Test was carried out by the 15ton heavy tamper with drop height of 20m in Yard 1, 3 and with drop height of 15m in Yard 2, 4 We evaluated the compaction ability, optimum compaction number and noiseㆍvibration through field test, monitoring. To make use of waste landfill as a construction site, The dynamic compaction method is suitable for using in waste landfill as a construction site among the ground improvement methods.

  • PDF