• 제목/요약/키워드: dynamic boundary condition

검색결과 350건 처리시간 0.025초

무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 자유진동해석 (Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions)

  • 강상욱;김일순;이장무
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.821-827
    • /
    • 2003
  • The so-called boundary node method (or NDIF method) that was developed by the authors has been extended for free vibration analysis of arbitrarily shaped plates with free edges. Since the proposed method requires no interpolation functions. no integration Procedure is needed on boundary edges of the plates and only a small amount of numerical calculation is involved, compared with FEM and BEM. In order to explain tile reason why spurious eigenvalues are generated when the NDIF method is applied to free plates, the NDIF method has been considered for free vibration analysis of both a fixed string and a free beam. Finally, verification examples show that natural frequencies obtained by the present method agree well with those given by an exact method or a numerical method (ANSYS).

2차원 자유표면파 문제에서의 방사조건 처리에 관한 고찰 (A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems)

  • 김용환
    • 대한조선학회논문집
    • /
    • 제29권3호
    • /
    • pp.80-89
    • /
    • 1992
  • 자유표면파 문제에서의 방사조건을 위해 두가지 기법을 적용하여 보았다. 우선, 가상감쇠의 개념을 적용하여 일정한 구간에서 파를 감쇠시킴으로써 열린경계면(open boundary)에서 반사파를 제거하는 방법을 적용하여 보았다. 또 다른 방법으로서는 Orlanski의 방법을 변형하여 적용함으로써 단방향 파동에 대한 방사조건 처리기법을 다루었다. 몇가지의 전형적인 자유표면파문제에 대해 이들 기법을 적용하여 그 유용성을 고찰하였는데, 이들 기법은 그 적용방법이 간단하고 비선형문제에서도 사용될 수 있을 것으로 사료된다. 문제의 해법으로 기본 쏘오스 분포법이 사용되었고 비선형의 자유표면 경계조건이 적용되었다.

  • PDF

외부가압 공기베어링의 동적 특성에 관한 해석 (A Study on the Dynamic Characteristics of an Externally Pressurized Gas Bearing)

  • 김우정;박상신;한동철
    • Tribology and Lubricants
    • /
    • 제7권2호
    • /
    • pp.51-60
    • /
    • 1991
  • For the accurate run-out of a light rotor shaft the sliding bearings supplied with externally pressurized air are effectively applied, and it is important to predict the static and dynamic characteristics of rotor-bearing system. In this study direct numerical method is applied to solve the perturbed Reynolds' equation. To solve it the perturbed dimensionless mass flow rate is used as the boundary condition under the inherently-compensated restrictor. The dynamic characteristics of a rotor supported in the externally pressurized air bearings are analyzed, and as a result the orbit of the journal center is calculated. The theoretical results are investigated and discussed.

Dynamic simulation of squeezing flow of ER fluids using parallel processing

  • Kim, Do-Hoon;Chu, Sang-Hyon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제11권3호
    • /
    • pp.233-240
    • /
    • 1999
  • In order to understand the flow behavior of Electrorheological (ER) fluid, dynamic simulation has been intensively performed for the last decade. When the shear flow is applied, it is easy to carry out the simulation with relatively small number of particles because of the periodic boundary condition. For the squeezing flow, however, it is not easy to apply the periodic boundary condition, and the number of particles needs to be increased to simulate the ER system more realistically. For this reason, the simulation of ER fluid under squeezing flow has been mostly performed with some representative chains or with the approximation that severely restricts the flow geometry to reduce the computational load. In this study, Message Passing Interface (MPI), which is one of the most widely-used parallel processing techniques, has been employed in a dynamic simulation of ER fluid under squeezing flow. As the number of particles used in the simulation could be increased significantly, full domain between the electrodes has been covered. The numerical treatment or the approximation used to reduce the computational load has been evaluated for its validity, and was found to be quite effective. As the number of particles is increased, the fluctuation of the normal stress becomes diminished and the prediction in general was found to be qualitatively In good agreement with the experimental results.

  • PDF

Coordinative movement of articulators in bilabial stop /p/

  • Son, Minjung
    • 말소리와 음성과학
    • /
    • 제10권4호
    • /
    • pp.77-89
    • /
    • 2018
  • Speech articulators are coordinated for the purpose of segmental constriction in terms of a task. In particular, vertical jaw movements repeatedly contribute to consonantal as well as vocalic constriction. The current study explores vertical jaw movements in conjunction with bilabial constriction in bilabial stop /p/ in the context /a/-to-/a/. Revisiting kinematic data of /p/ collected using the electromagenetic midsagittal articulometer (EMMA) method from seven (four female and three male) speakers of Seoul Korean, we examined maximum vertical jaw position, its relative timing with respect to the upper and lower lips, and lip aperture minima. The results of those dependent variables are recapitulated in terms of linguistic (different word boundaries) and paralinguistic (different speech rates) factors as follows. Firstly, maximum jaw height was lower in the across-word boundary condition (across-word < within-word), but it did not differ as a function of different speech rates (comfortable = fast). Secondly, more reduction in the lip aperture (LA) gesture occurred in fast rate, while word-boundary effects were absent. Thirdly, jaw raising was still in progress after the lips' positional extrema were achieved in the within-word condition, while the former was completed before the latter in the across-word condition. Lastly, relative temporal lags between the jaw and the lips (UL and LL) were more synchronous in fast rate, compared to comfortable rate. When these results are considered together, it is possible to posit that speakers are not tolerant of lenition to the extent that it is potentially realized as a labial approximant in either word-boundary condition while jaw height still manifested lower jaw position in the across-word boundary condition. Early termination of vertical jaw maxima before vertical lower lip maxima across-word condition may be partly responsible for the spatial reduction of jaw raising movements. This may come about as a consequence of an excessive number of factors (e.g., upper lip height (UH), lower lip height (LH), jaw angle (JA)) for the representation of a vector with two degrees of freedom (x, y) engaged in a gesture-based task (e.g., lip aperture (LA)). In the task-dynamic application toolkit, the jaw angle parameter can be assigned numerical values for greater weight in the across-word boundary condition, which in turn gives rise to lower jaw position. Speech rate-dependent spatial reduction in lip aperture may be able to be resolved by means of manipulating activation time of an active tract variable in the gestural score level.

전기자동차 소음저감을 위한 구동모터 하우징의 동특성 평가 (Identifying Dynamic Characteristics of the Traction Motor Housing For the Noise reduction of the Electric vehicle)

  • 박종찬;박승용;조현규;박윤수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.818-823
    • /
    • 2012
  • Assessment of the dynamics properties, like damping, dynamic stiffness and resonance sharpness is essential for the development of a robust system, specifically for the reduction of a traction motor noise. A practical method for identifying dynamic characteristics of a traction motor hosing for an electric vehicle is proposed. Assembling using interference fit of the components of the motor is attributed to the main cause of strong nonlinearity. It is well known that nonlinearity of a structure makes it difficult to assess damping properties or dynamic characteristics of the system. This research presents a practical damping or dynamic stiffness identifying procedures for a nonlinear system according to the boundary condition between assembled components. Based on the simple idea that impact forces of modal tests are highly affected on the condition of the hammer tip, Auto Power Spectrum of the impact forces are used to assess the assembling condition and dynamic characteristics of the system, especially, damping of the system.

  • PDF

Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM

  • Tian, Xinran;Du, Chengbin;Dai, Shangqiu;Chen, Denghong
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.649-663
    • /
    • 2018
  • The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.

Exact solution for free vibration of curved beams with variable curvature and torsion

  • Zhu, Li-Li;Zhao, Ying-Hua;Wang, Guang-Xin
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.345-359
    • /
    • 2013
  • For the purpose of investigating the free vibration response of the spatial curved beams, the governing equations are derived in matrix formats, considering the variable curvature and torsion. The theory includes all the effects of rotary inertia, shear and axial deformations. Frobenius' scheme and the dynamic stiffness method are then applied to solve these equations. A computer program is coded in Mathematica according to the proposed method. As a special case, the dynamic stiffness and further the natural frequencies of a cylindrical helical spring under fixed-fixed boundary condition are carried out. Comparison of the present results with the FEM results using body elements in I-DEAS shows good accuracy in computation and validity of the model. Further, the present model is used for reciprocal spiral rods with different boundary conditions, and the comparison with FEM results shows that only a limited number of terms in the resultant provide a relatively accurate solution.

On the dynamics of hockey stick after contacting with the ball

  • Yue Jia
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.287-301
    • /
    • 2023
  • Hockey games attracts many fans around the world. This game requires a specific type of ball and a stick for controlling the motion and trace of the ball. This control of motion involves hitting the ball which is a direct intensive dynamic loading. The impact load transferred directly to the hand of the player and in the professional player may cause long term medical problems. Therefore, dynamic motion of the stick should be understood. In the current study, we analyze the dynamic motion of a hockey stick under impact loading from a hockey ball. In doing so, the stick geometry is simplified as a beam structure and quasi-2D relations of displacement is applied along with classical linear elasticity theory for isotropic materials. The governing equations and natural boundary condition are extracted using Hamilton's principle. The final equations in terms of displacement components are solved using Galerkin's numerical method. The results are presented using indentation and contact force values for variations of different parameters.

Effect of boundary conditions on modal parameters of the Run Yang Suspension Bridge

  • Li, Zhijun;Li, Aiqun;Zhang, Jian
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.905-920
    • /
    • 2010
  • Changes in temperature, loads and boundary conditions may have effects on the dynamic properties of large civil structures. Taking the Run Yang Suspension Bridge as an example, modal properties obtained from ambient vibration tests and from the structural health monitoring system of the bridge are used to identify and evaluate the modal parameter variability. Comparisons of these modal parameters reveal that several low-order modes experience a significant change in frequency from the completion of the bridge to its operation. However, the correlation analysis between measured modal parameters and the temperature shows that temperature has a slight influence on the low-order modal frequencies. Therefore, this paper focuses on the effects of the boundary conditions on the dynamic behaviors of the suspension bridge. An analytical model is proposed to perform a sensitivity analysis on modal parameters of the bridge concerning the stiffness of expansion joints located at two ends of bridge girders. It is concluded that the boundary conditions have a significant influence on the low-order modal parameters of the suspension bridge. In addition, the influence of vehicle load on modal parameters is also investigated based on the proposed model.