• Title/Summary/Keyword: dynamic axial loading

Search Result 100, Processing Time 0.024 seconds

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

Reproduction of Cyclic Triaxial Behavior of Unsaturated Soil using Element Simulation (요소 시뮬레이션에 의한 불포화토의 반복삼축거동 재현)

  • Lee, Chungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.5-14
    • /
    • 2015
  • Suction affects the unsaturated soil as the negative pore pressure, and leads to increases of the yield stress and the plastic shear stiffness of the soil skeleton due to the growth in interparticle stress. Hence, in this study, in order to account for these effects of suction under the dynamic loading condition such as the earthquake, the element simulation of the cyclic triaxial test using induced stress-strain relation based on cyclic elasto-plastic constitutive model extended for unsaturated soil considering the $1^{st}$ and the $2^{nd}$ yield functions was conducted. Through the stress path, stress-strain relation and relation between volumetric strain and axial strain, it was seen in all the cases that the simulation results demonstrated a good agreement with the experimental results. It is expected that the results of this study possibly contribute to the accuracy improvement on the prediction of unsaturated soil behavior under the dynamic loading condition.

Performance Test and Numerical Model Development of Restoring Viscous Damper for X-type Damper System (X형 감쇠시스템을 위한 복원성 점성 감쇠기 성능 실험 및 수치모형 개발)

  • Kim, David;Park, Jangho;Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.52-57
    • /
    • 2016
  • In this study, a restoring viscous damper is introduced for X-type damper system which is designed for the seismic response control of large spatial structures. A nonlinear numerical model for its behavior is developed using the result of dynamic loading tests. The X-type damper system is composed of restoring viscous dampers and connecting devices such as adjustable wire bracing, where the damping capacity of the system is controllable by changing the number of the dampers. The restoring viscous damper is devised to exert main damping force in tension direction, which is effective to prevent the buckling of bracing subjected to compressive axial force. To evaluate the performance of the proposed damper, dynamic cyclic loading tests are performed by using manufactured dampers at full scale. In order to construct the numerical model of the damper system, its model parameters are first identified using a nonlinear curve fitting method with the test data. The numerical simulations are then performed to validate the accuracy of the numerical model in comparison with the experimental test results. It is expected that the proposed system is effectively applicable to various building structures for seismic performance enhancement.

Investigations on the influence of radial confinement in the impact response of concrete

  • Al-Salloum, Yousef;Alsayed, Saleh;Almusallam, Tarek;Ibrahim, S.M.;Abbas, H.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.675-694
    • /
    • 2014
  • Annular and solid concrete specimens with different aspect ratios and static unconfined compressive strengths were studied for impact loading using SHPB test setup. Numerical simulations in LSDYNA were also carried out and results were validated. The stress-strain curves obtained under dynamic loading were also compared with static compressive tests. The mode of failure of concrete specimen was a typical ductile failure at high strain rates. In general, the dynamic increase factor (DIF) of thin solid specimens was higher than thick samples. In the numerical study, the variation of axial, hydrostatic and radial stresses for solid and annular samples was studied. The core phenomenon due to confinement was observed for solid samples wherein the applied loads were primarily borne by the innermost concrete zone rather than the outer peripheral zone. In the annular samples, especially with large diameter inside hole, the distribution of stresses was relatively uniform along the radial distance. Qualitatively, only a small change in the distribution of stresses for annular samples with different internal diameters studied was observed.

Dynamic Shear Modulus and Damping Ratio of Soft Clay (연약점토의 동력학적 전단탄성계수 및 감쇠비)

  • 하광현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 1986
  • Considering the effects of confining pressure, initial shear stress, cyclic stress ratio and number of loading cycles, cyclic triaxial tests are carried out to clarify the soil dynamic properties such as shear modulus and value of material damping of clay under undrained cyclic loading conditions. The results show that no obvious dependency on initial shear stress and effective confining stress are recognized in the shear modulus and damping ratio plotted versus strain. However, the shear modulus decreases and the damping ratio increases with increasing axial strain. When compared with others, it is also revealed that the shear moduli are distributed within the range curves obtained using empirical equations derived by Marcuson et al. (3) and Kokusho et al. (4), and damping ratios are distributed between the curves obtained by Kokusho et al. (4) and Ishihara et al. (9).

  • PDF

Numerical analysis of an innovative expanding pile under static and dynamic loading

  • Abdullah Cheraghi;Amir K. Ghorbani-Tanha
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.453-462
    • /
    • 2023
  • Designing pile foundations subjected to the uplift forces such as buildings, oil platforms, and anchors is becoming increasingly concerned. In this paper, the conceptual design of a new type of driven piles called expanding pile is presented and assessed. Some grooves have been created in the shaft of the novel pile, and some moveable arms have been designed at the pile tip. At first, static analyses using the finite element method were performed to evaluate the effectiveness of the innovative pile on the axial bearing capacity. Then its effect on seismic behavior of moment frame is considered. Results show that the expanding arms were provided an ideal anchorage system because of the soil's noticeable locking-up effect increasing uplift bearing capacity. For example at the end of the static tensile loading procedure, displacement decrement up to 55 percent is observed. In addition, comparing the uplift bearing capacity of the usual and new pile with different lengths in sand and clay layers shows noticeable effect and sharp increase up to about two times especially in longer piles. Besides, a sensible reduction in the seismic response and the stresses in the beam-column connection between 23-36 percent are achieved that ensures better seismic behavior of the structures.

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Time history analysis of a tensile fabric structure subjected to different seismic recordings

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Chiumenti, Michele;Hernandez-Martinez, Alejandro
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.161-173
    • /
    • 2021
  • The structural behavior of a tensile fabric structure, known as hypar, is investigated. Seismic-induced stresses in the fabric and axial forces in masts and cables are obtained using accelerograms recorded at different regions of the world. Time-history analysis using each recording are performed for the hypar by using finite element simulation. It is found that while the seismic stresses in the fabric are not critical for design, the seismic tensile forces in cables and the seismic compressive forces in masts should not be disregarded by designers. This is important, because the seismic design is usually not considered so relevant, as compared for instance with wind design, for these types ofstructures. The most relevant findings of this study are: 1) dynamic axial forces can have an increase of up to twice the static loading when the TFS is subjected to seismic demands, 2) large peak ground accelerations seem to be the key parameter for significant seismic-induced axial forces, but not clear trend is found to relate such forces with earthquakes and site characteristics and, 3) the inclusion or exclusion of the form-finding in the analysis procedure importantly affects results ofseismic stresses in the fabric, but not in the frame.

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Improvement of Seismic Performance Evaluation Method for Concrete Dam Piers by Applying Collapse-Level Earthquake(CLE) (붕괴방지수준(CLE)을 적용한 콘크리트 댐 피어부 내진성능평가 방안 개선)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Min-Ho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • The purpose of this paper is to suggest a method for applying a reasonable dam axial seismic load loading method and load-bearing capacity evaluation method in the dynamic analysis of the pier part of a concrete dam to which the seismic force of the collapse prevention level is applied. To this end, the pier part of a concrete dam was selected as a target facility, and the characteristics of the dynamic behavior in the axial direction of the weir dam were analyzed through dynamic analysis applying various weir widths, and 'U.S. The load-bearing capacity evaluation was performed by applying the RC hydraulic structure evaluation technique suggested by the Army Corps, 2007'. As a result of the study, when applying seismic force in the axial direction of the pier part, it is more realistic to assume that the axial direction of the weir part dam behaves as a rigid body and 'U.S. Army Corps, 2007' suggested that the method of reviewing the load-bearing capacity for moment and shear was considered reasonable, so it was concluded that improvement of the current evaluation method was necessary. If the improvement of the research result is applied, it will have the effect of deriving more reasonable evaluation results than the current seismic performance evaluation method using CLE. It is judged that additional research is needed in the future on the torsional moment occurring in the pier part.