• 제목/요약/키워드: dynamic analysis method

검색결과 5,868건 처리시간 0.033초

Dynamic fracture instability in brittle materials: Insights from DEM simulations

  • Kou, Miaomiao;Han, Dongchen;Xiao, Congcong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.65-75
    • /
    • 2019
  • In this article, the dynamic fracture instability characteristics, including dynamic crack propagation and crack branching, in PMMA brittle solids under dynamic loading are investigated using the discrete element method (DEM) simulations. The microscopic parameters in DEM are first calibrated using the comparison with the previous experimental results not only in the field of qualitative analysis, but also in the field of quantitative analysis. The calibrating process illustrates that the selected microscopic parameters in DEM are suitable to effectively and accurately simulate dynamic fracture process in PMMA brittle solids subjected to dynamic loads. The typical dynamic fracture behaviors of solids under dynamic loading are then reproduced by DEM. Compared with the previous experimental and numerical results, the present numerical results are in good agreement with the existing ones not only in the field of qualitative analysis, but also in the field of quantitative analysis. Furthermore, effects of dynamic loading magnitude, offset distance of the initial crack and initial crack length on dynamic fracture behaviors are numerically discussed.

Efficient seismic analysis of multi-story buildings

  • Lee, Dong Guen;Kim, Hee Cheul
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.497-511
    • /
    • 1996
  • The equivalent static force procedure and the response spectrum analysis method are widely used for seismic analyses of multi-story buildings. The equivalent static force procedure is one of the most simple but less accurate method in predicting possible seismic response of a structure. The response spectrum analysis method provides more accurate results while it takes much longer computational time. In the response spectrum method, dynamic response of a multi-story building is obtained by combining modal responses through a proper procedure such as SRSS or CQC method. Since all of the analysis results are expressed in absolute values, structural engineers have difficulties to combine them with the results obtained from the static analysis. Design automation is interrupted at this stage because of the difficulty in the decision of the most critical design load. Pseudo-dynamic analysis method proposed in this study provides more accurate seismic analysis results than those of the equivalent static force procedure since the dynamic characteristics of a structure is considered. And the proposed method has an advantage in combination of the analysis results due to gravity loads and seismic loads since the direction of the forces can be considered.

등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구 (Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads)

  • 장환학;이현아;박경진
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

전기체 동적 유한요소 모델을 이용한 소형항공기 플러터 해석 (Flutter Analysis of Small Aircraft using Full Airframe Dynamic FE Model)

  • 이상욱;백승길;김성찬;황인희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.424-429
    • /
    • 2008
  • Aircraft flutter analysis model consists of dynamic FE model and aerodynamic model. Dynamic FE model is composed of stiffness and mass model, and is used for the prediction of normal mode characteristics of the structure. Since aircraft flutter analysis is normally performed in the modal domain, dynamic FE model shall be constructed to describe the modal characteristics of the structure with sufficient accuracy. In this study, dynamic FE modeling method was described using full airframe FE model and structural and system weight data for aircraft flutter analysis. In addition, full airframe dynamic FE model for composite small aircraft was constituted for normal mode and flutter analysis, and the mass modeling results were compared with the target weight data to validate the mass modeling method proposed. Finally, full airframe flutter analysis of composite small aircraft was performed with the dynamic FE model and the aerodynamic model composed.

  • PDF

조속기의 동적 평형위치 해석 (Analysis of Dynamic Equilibrium Configuration of Speed Governor)

  • 강주석
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.4733-4738
    • /
    • 2013
  • 본 연구에서는 구속조건을 가진 기계계의 동적 평형위치를 다물체 동역학 해석방법을 이용하여 계산하였다. 다물체계에서 얻어지는 시간 구속조건을 가진 구속조건식과 동역학식으로부터 독립좌표계로 이루어진 동적평형식을 유도하였다. 동적 평형식은 구속조건식과 함께 비선형 대수방정식의 형태로서 Newton-Raphson 방법을 이용하여 수치해를 구하였다. 제안된 동적 평형 계산 방법을 조속기에 적용하여 동적 평형위치를 구하였다. 해석결과는 상용 프로그램의 동역학해석을 통한 평형위치의 결과와 비교하여 타당성을 검증하였다. 조속기의 회전 각속도에 대한 평형위치를 계산하고 설계 파라미터에 대한 평형위치의 영향을 분석하였다.

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong;Xu, Guofeng;Lei, Xu
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.529-536
    • /
    • 2016
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

국내 저수지에 대한 정역학적 및 동역학적 안정해석방법의 비교 및 고찰 (Comparing and Consideration of Static and Dynamic Stability Analysis Methods for Domestic Reservoirs)

  • 이무재;김용성;허준;박민우;타망비벡;안성수
    • 한국농공학회논문집
    • /
    • 제62권5호
    • /
    • pp.73-84
    • /
    • 2020
  • In this study, we compared and analyzed the static and dynamic analysis method for agricultural reservoirs. In addition, we assumed the aging of reservoir as the deterioration of the internal friction angle and cohesion. The internal friction angle and cohesion were applied by dividing into 4 case for each reservoir. As a result of comparing the stability of the reservoir embankment, it was found that the dynamic stability analysis method showed a greater risk than the static stability analysis method when dynamic loads such as earthquakes were applied. Therefore, when detailed review such as liquefaction is required, it is considered that the dynamic stability analysis method should be applied first. If a study on the change in material properties due to the aging of the reservoir is conducted, the stability analysis of the reservoir due to the aging of the reservoir can be performed more accurately. In addition, if a study comparing the results of dynamic stability analysis and static stability analysis for earthquakes with various characteristics for more reservoirs is conducted, detailed criteria for the case where dynamic stability analysis should be considered can be presented.

Dynamic Analysis of Sliders in Optical Memory System

  • Gyeong Hwa, Im;Chae Heon, An
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.200-206
    • /
    • 2003
  • Identification method is formulated to evaluate the dynamic characteristics of air bearings under NFR (Near Field Recording) sliders. Using dynamic analysis, impulse responses and frequency response functions of NFR sliders are obtained on numerical non-linear models including rigid motion of slider and fluid motion of air bearing under the slider. System parameters are identified by modal analysis method and instrumental variable method. The identified system parameters of sliders are utilized to evaluate the dynamic characteristics of air bearings.

  • PDF

도시철도 지중 콘크리트 구조물의 내진해석법 적용에 관한 연구 (A Study of seismic analysis method of urban rail transit's underground concrete structure)

  • 이희영;이동호;김은겸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1159-1164
    • /
    • 2005
  • Seismic analysis methods in use on ground structure are equivalentstatic analysis, response-displacement method and dynamic analysis etc. Equivalentstatic analysis does not considerdynamic effect, and dynamic analysis process is very complex. then 'Urbanrail transit earthquake-resistance design standard (2005.06)' is persuading that analyze by response displacement method that consider enough dynamic effect of ground structure statically. But, It is very complex and difficult to apply response-displacement method in the field. So, modified equivalentstatic analysis or pseudo static analysis that is easy to apply in the field and have rationality of design is practically used. In this study, I try to prescribe the applicable scale of structure and static analysis that have calculative effectiveness about response-displacement method by comparing and analyzing the result of each analysis method according to the scale of urban rail transit' box type concrete structure and by performing seismic analysis that apply modified equivalentstatic analysis, pseudo static analysis and response-displacement method changing the kind of ground, depth of bedrock, size of structure.

  • PDF

동적 평형위치에 있는 다물체계의 모드특성에 미치는 공차의 영향 분석을 위한 해석적 방법 (Analytical Method to Analyze the Effect of Tolerance on the Modal Characteristic of Multi-body Systems in Dynamic Equilibrium)

  • 김범석;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.109-114
    • /
    • 2007
  • Analytical method to analyze the effect of tolerance on the modal characteristic of multi-body systems in dynamic equilibrium position is suggested in this paper. Monte-Carlo Method is conventionally employed to perform the tolerance analysis. However, Monte-Carlo Method spends too much time for analysis and has a greater or less accuracy depending on sample condition. To resolve these problems, an analytical method is suggested in this paper. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivities of damped natural frequencies and the transfer function can be calculated at the dynamic equilibrium position. The effect of tolerance on the modal characteristic can be analyzed from tolerance analysis method.

  • PDF