• Title/Summary/Keyword: durability safety

Search Result 670, Processing Time 0.03 seconds

Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns

  • Ji, Xiaodong;Zhang, Mingliang;Kang, Hongzhen;Qian, Jiaru;Hu, Hongsong
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.179-199
    • /
    • 2014
  • The steel tube-reinforced concrete (ST-RC) composite column is a novel type of composite column, consisting of a steel tube embedded in reinforced concrete. The objective of this paper is to investigate the effect of cumulative damage on the seismic behavior of ST-RC columns through experimental testing. Six large-scale ST-RC column specimens were subjected to high axial forces and cyclic lateral loading. The specimens included two groups, where Group I had a higher amount of transverse reinforcement than Group II. The test results indicate that all specimens failed in a flexural mode, characterized by buckling and yielding of longitudinal rebars, failure of transverse rebars, compressive crushing of concrete, and steel tube buckling at the base of the columns. The number of loading cycles was found to have minimal effect on the strength capacity of the specimens. The number of loading cycles had limited effect on the deformation capacity for the Group I specimens, while an obvious effect on the deformation capacity for the Group II specimens was observed. The Group I specimen showed significantly larger deformation and energy dissipation capacities than the corresponding Group II specimen, for the case where the lateral cyclic loads were repeated ten cycles at each drift level. The ultimate displacement of the Group I specimen was 25% larger than that of the Group II counterpart, and the cumulative energy dissipated by the former was 2.8 times that of the latter. Based on the test results, recommendations are made for the amount of transverse reinforcement required in seismic design of ST-RC columns for ensuring adequate deformation capacity.

Tests and finite element analysis on the local buckling of 420 MPa steel equal angle columns under axial compression

  • Shi, G.;Liu, Z.;Ban, H.Y.;Zhang, Y.;Shi, Y.J.;Wang, Y.Q.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.31-51
    • /
    • 2012
  • Local buckling can be ignored for hot-rolled ordinary strength steel equal angle compression members, because the width-to-thickness ratios of the leg don't exceed the limit value. With the development of steel structures, Q420 high strength steel angles with the nominal yield strength of 420 MPa have begun to be widely used in China. Because of the high strength, the limit value of the width-to-thickness ratio becomes smaller than that of ordinary steel strength, which causes that the width-to-thickness ratios of some hot-rolled steel angle sections exceed the limit value. Consequently, local buckling must be considered for 420 MPa steel equal angles under axial compression. The existing research on the local buckling of high strength steel members under axial compression is briefly summarized, and it shows that there is lack of study on the local buckling of high strength steel equal angles under axial compression. Aiming at the local buckling of high strength steel angles, this paper conducts an axial compression experiment of 420MPa high strength steel equal angles, including 15 stub columns. The test results are compared with the corresponding design methods in ANSI/AISC 360-05 and Eurocode 3. Then a finite element model is developed to analyze the local buckling behavior of high strength steel equal angles under axial compression, and validated by the test results. Following the validation, a finite element parametric study is conducted to study the influences of a range of parameters, and the analysis results are compared with the design strengths by ANSI/AISC 360-05 and Eurocode 3.

The drained deformation characteristics of sand subjected to lateral cyclic loading

  • Junhua Xiao;Jiapei Ma;Jianfeng Xue;Zhiyong Liu;Yingqi Bai
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.481-489
    • /
    • 2023
  • Drained cyclic triaxial tests were conducted on a saturated sand to examine its deformation characteristics under either axial or lateral cyclic loading condition. To apply lateral cyclic loading, the cell pressure was cycled while maintaining a constant vertical stress. The strain accumulations and flow direction in the soil were presented and discussed considering various initial stress ratios (η0), cyclic stress amplitudes and cyclic stress paths. The results indicate that axial strain accumulation shows an exponential increase with the maximum stress ratio (ηmax). The initial deviatoric stress has comparable effects with lateral cyclic stress amplitude on the accumulated axial strain. In contrast, the accumulated volumetric strain is directly proportional to the lateral cyclic stress amplitude but not much affected by η0 values. Due to the anisotropy of the soil, the accumulated axial and lateral bulging strains are greater in lateral cyclic loading when compared to axial cyclic loading even though ηmax is the same. It is also found that ηmax affects soil's lateral deformation and increasing the ratio could change the lateral deformation from contraction to bulging. The flow direction depends on ηmax in the sand under lateral cyclic loading, regardless of η0 values and the cyclic stress amplitudes, and a large ηmax could lead to great deviatoric strain but a little volumetric strain accumulation.

A Study on Safety Evaluation of Wheel Using Roller Rig Tester (주행시험기를 이용한 차륜의 안전성 평가에 관한 연구)

  • Ham, Young Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.591-595
    • /
    • 2015
  • The roller rig tester for safety performance evaluation of wheel derailment is a test facility which can give the test load condition to the test wheel, similar to the actual dynamic condition in actual running condition. This study describes the evaluation result on the durability of the resilient wheel equipped with the ring damper and the damping material, and installed in the half part of a full scaled bogie in combination with the primary spring when it rotates under the dynamic condition. The evaluation result on durability of resilient wheel after load test of 2 million cycles shows that the safety of wheel is not affected by the applied load in visual inspection and nondestructive test, however, in the bolt used for fastening the ring damper to the wheel the loosening was found. Accordingly the use of self-locking nut and washer is recommended.

A Research on Dynamic Behavior of Clamshell Hood to Secure the Safety and Durability Performance

  • Kyoungtaek Kwak;Seunghoon Kang;Jaedong Yoo;Kyungdug Seo;Youngchul Shin;Kyungsup Chun;Jaekyu Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • The purpose of this study is to predict the dynamic behavior of clamshell hood system on the harsh road driving condition, and secure the safety and durability performance of the system. The equation of motion of hood system is derived and the numerical analysis is implemented to obtain the lateral movement of the hood system. Also, the actual Belgian road test results are correlated to the predicted ones, and confirm the reliability of the system. Then, the parameter study is conducted to figure out the sensitive factors to affect the dynamic behavior, and the engineering design guide to make the system robust to confine the minimum friction force generated from hood latch and maximum hood weight is suggested from this research.

ASSESSMENT OF PROPERTIES AND DURABILITY OF FLY ASH CONCRETE USED IN KOREAN NUCLEAR POWER PLANTS

  • Cho, Myung-Sug;Noh, Jae-Myoung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.331-342
    • /
    • 2012
  • Since the opening of the Shin-Kori #1,2 in 2005, fly ash mixed concrete has been used for NPP concrete structures under construction in Korea with the aim of preventing aging and improving durability. In this paper, the quality suitability of fly ash manufactured in Korea is assessed and the basic physical properties of fly ash mixed concrete and its durability against primary causes of aging are verified through experimental methods. Because of the internal structure filling effect from the pozzolanic reaction of fly ash and the resulting improvements in mechanical performance in such areas as strength and salt damage resistance, the durability of fly ash mixed concrete is shown to be superior. It is judged that this result can be applied in measures not only for improving the safety of NPP structures in operation in Korea but also for implementing effective structure life management should extending the life of structures be needed in the future.

Durability Evaluation of RC Structures subjected. to Chloride Attack (철근콘크리트 구조물의 염해 내구성 평가)

  • 백승우;남진원;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.663-668
    • /
    • 2003
  • In this paper, an environmental factor and a durability resistance factor which adapts the concept of the Load Resistance Factor Design for safety design of RC structures is derived and a basic principle of a durability evaluation for RC structures using the factors is proposed. It is shown that durability of RC structures can be evaluated by comparing predicted value of chloride ion concentration with limit value of concentration for steel corrosion generation in reinforcement steel position and the durability of concrete manufactured for the RC structures can be also evaluated by comparing characteristic diffusion coefficient of concrete with predicted diffusion coefficient during mixture design.

  • PDF

A Study on the Durability Estimation of Vehicle Fuel Tank (차량용 연료탱크의 내구도 평가에 관한 연구)

  • Hong, Min-Sung;Cho, Eun-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.614-620
    • /
    • 2009
  • A fuel tank of a vehicle is an important part due to its flammable contents ant its importance during crash conditions. Therefore, the fuel tank's design should be assessed for durability and robustness to ensure safety during the early development phase. Previously, evaluation for the durability was done by testing in physical driving conditions which could only be done after the completion of the vehicle. Computation simulation is a more effective method to evaluate the strength and durability of the fuel tank during the early stage. In this paper, two outstanding computational simulation methods are studied. One evaluates PV cycle fatigue due to build up pressure in the fuel tank and the other evaluates the PSD vibration fatigue from modal characteristics. The results show that computational methods agree with physical tests and are thus suitable to analyze the strength and durability of the fuel tank at early development phase.

  • PDF

Study on Durability Performance Evaluation of Retarder Parts in Testing Mode for Heavy-duty Vehicle (중대형차량 리타더 단품 내구성 평가를 위한 내구시험모드 개발에 관한 연구)

  • Seo, Dongchoon;Lee, Iksung;Ko, Sangchul;Cho, Sanghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.575-582
    • /
    • 2015
  • The Durability cycle is very important for the success of vehicle testing to evaluate Retarder. The purpose of this study is to develop the durability mode on performance evaluation of retarder. Commercial vehicles are equipped with an auxiliary braking device in order to increase safety. A typical device for retarder depends heavily on imports. Domestic development has now become an urgent task. But, No state has an evaluation method for performance evaluation of the auxiliary braking device. We presented the durability test mode for the performance evaluation of the retarder was verified experimentally.