• 제목/요약/키워드: durability properties

검색결과 1,602건 처리시간 0.024초

Effect of steel fibres and nano silica on fracture properties of medium strength concrete

  • Murthy, A. Ramachandra;Ganesh, P.
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.143-150
    • /
    • 2019
  • This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.

Mechanical and durability properties of self-compacting concrete with blended binders

  • Xie, T.Y.;Elchalakani, M.;Mohamed Ali, M.S.;Dong, M.H.;Karrech, A.;Li, G.
    • Computers and Concrete
    • /
    • 제22권4호
    • /
    • pp.407-417
    • /
    • 2018
  • Over the past three decades, self-compacting concrete (SCC), which is characterized by its superior rheological properties, has been gradually used in construction industry. It is now recognized that the application of SCC using supplementary cementitious materials (SCM) is highly attractive and promising technology reducing the environmental impact of the construction industry and reducing the higher materials costs. This paper presents an experimental study that investigated the mechanical and durability properties of SCCs manufactured with blended binders including fly ash, slag, and micro-silica. A total of 8 batches of SCCs were manufactured. As series of tests were conducted to establish the rheological properties, compressive strength, and durability properties including the water absorption, water permeability, rapid chloride permeability and initial surface absorption of the SCCs. The influences of the SCC strength grade, blended types and content on the properties of the SCCs are investigated. Unified reactive indices are proposed based on the mix proportion and the chemical composition of the corresponding binders are used to assess the compressive strength and strength development of the SCCs. The results also indicate the differences in the underlying mechanisms to drive the durability properties of the SCC at the different strength grades.

Selecting optimized mix proportion of bagasse ash blended high performance concrete using analytical hierarchy process (AHP)

  • Praveenkumar, S.;Sankarasubramanian, G.;Sindhu, S.
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.459-470
    • /
    • 2019
  • Apart from strength properties, durability, toughness and workability are also important criteria in defining the performance of a concrete structure. Hence "High Performance Concrete (HPC)" is introduced. It is different from high strength concrete and can have various applications. In this paper, the properties (Mechanical and Durability) of High Performance Concrete blended with bagasse ash at 5%, 10%, 15% and 20% are studied. However, it is difficult to analyze the performance based on different properties obtained from different experiments. Hence it is necessary to combine all the criteria/properties into a single value to obtain a result by a technique called Analytical Hierarchy Process (AHP).It is an effective tool for dealing with complex decision making, and may aid the decision maker to set priorities and make the best decision. In addition, the AHP incorporates a useful technique for checking the consistency of the decision maker?s evaluations, thus reducing the bias in the decision making process.

인산화 전분 ER 유체의 댐퍼 내구 특성 (Durability of Phosphorated Starch Based Electrorheological Fluids in Damper Application)

  • 이철희;장민규;손정우;한영민;최승복
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.285-291
    • /
    • 2009
  • In this work, durability characteristics of electrorheological (ER) fluid for damper application are experimentally investigated. ER fluid is prepared by using phosphorated starch particles and silicone oil. The field-dependent Bingham characteristics and response time for the proposed ER fluids are experimentally obtained. Experimental apparatus of durability test for ER fluid is established with cylindrical ER cylinder for mid-sized passenger vehicle. In order to evaluate the durability characteristics of ER fluid as a function of time, damping force and temperature variations are measured until one million cycles. After durability test, Bingham characteristics and response time of ER fluid are measured and compared to the initial properties. Microscopic pictures of ER fluid are taken to validate the changes of properties. The results indicate that the ER fluid can be commercially utilized in vehicle damper system with its durability performance. Moreover, the understanding of durability characteristics is essential to predict the service life of ER fluid as well as to design its applications.

스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구 (Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements)

  • 유태석;류성우;김진철
    • 한국도로학회논문집
    • /
    • 제20권2호
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

타이어의 벨트 부착력과 내구성능 간의 상관성 연구 (Correlation Study on Tire Belt Adhesion Properties and Durability Performance)

  • 홍승준;이호근
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.804-808
    • /
    • 2005
  • A pneumatic tire is made up of many flexible filaments of high modulus cord of natural textile, synthetic polymer, glass fiber, or fine hard drawn steel embedded in and bonded to a matrix of low modulus polymetric material. Adhesion property of these materials is very important in tire durability safety because belt-leaving-belt tread separation reduces the ability of a driver to control a vehicle, whether or not the separation is accompanied by a loss of air. In this study adhesion test of carcass-belt-tread is conducted on material properties of 5 PCR tire model, which are on sale in domestic market and analyzed adhesion properties. For those tire models FMVSS 109 indoor high speed durability test is conducted to analyze the correlation between adhesion force and high speed performance of tires and found the correlation between the two test results.

Strength and Durability Evaluation of Recycled Aggregate Concrete

  • Yehia, Sherif;Helal, Kareem;Abusharkh, Anaam;Zaher, Amani;Istaitiyeh, Hiba
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권2호
    • /
    • pp.219-239
    • /
    • 2015
  • This paper discusses the suitability of producing concrete with 100 % recycled aggregate to meet durability and strength requirements for different applications. Aggregate strength, gradation, absorption, specific gravity, shape and texture are some of the physical and mechanical characteristics that contribute to the strength and durability of concrete. In general, the quality of recycled aggregate depends on the loading and exposure conditions of the demolished structures. Therefore, the experimental program was focused on the evaluation of physical and mechanical properties of the recycled aggregate over a period of 6 months. In addition, concrete properties produced with fine and coarse recycled aggregate were evaluated. Several concrete mixes were prepared with 100 % recycled aggregates and the results were compared to that of a control mix. SEM was conducted to examine the microstructure of selected mixes. The results showed that concrete with acceptable strength and durability could be produced if high packing density is achieved.

폴리프로필렌 섬유보강 콘크리트(PFRC)의 역학적 특성 및 내구성에 관한 실험적 연구 (An Experimental Study on the Mechanical Study and Durability of PFRC(Polypropylene Fiber Reinforced Concrete))

  • 박승범;이봉춘;권혁준;윤준석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.293-298
    • /
    • 1998
  • The result of an experimental study on the mechanical properties and durability of polypropylene fiber reinforced concrete are presented in this paper. This study has been performed to obtain the properties of PFRC such as strength, toughness and durability. The test variables are fiber content, fiber types, W/C ratio. PFRC shows the highest strength when the polypropylene fiber contents were increased to 2.0 vol.%. Also, freeze-thaw resistance and carbonation were somewhat more improved than plain concrete.

  • PDF

ASSESSMENT OF PROPERTIES AND DURABILITY OF FLY ASH CONCRETE USED IN KOREAN NUCLEAR POWER PLANTS

  • Cho, Myung-Sug;Noh, Jae-Myoung
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.331-342
    • /
    • 2012
  • Since the opening of the Shin-Kori #1,2 in 2005, fly ash mixed concrete has been used for NPP concrete structures under construction in Korea with the aim of preventing aging and improving durability. In this paper, the quality suitability of fly ash manufactured in Korea is assessed and the basic physical properties of fly ash mixed concrete and its durability against primary causes of aging are verified through experimental methods. Because of the internal structure filling effect from the pozzolanic reaction of fly ash and the resulting improvements in mechanical performance in such areas as strength and salt damage resistance, the durability of fly ash mixed concrete is shown to be superior. It is judged that this result can be applied in measures not only for improving the safety of NPP structures in operation in Korea but also for implementing effective structure life management should extending the life of structures be needed in the future.

불포화폴리에스터 수지와 재생골재를 이용한 재생 폴리머 콘크리트의 강도 및 내구 특성 (Strength and Durability Properties of Recycled Polymer Concrete Using Unsaturated Polyester Resin and Recycled Aggregates)

  • 김영익;성찬용
    • 한국농공학회논문집
    • /
    • 제51권6호
    • /
    • pp.97-103
    • /
    • 2009
  • This study was performed to evaluate the strength and durability properties of recycled polymer concrete using unsaturated polyester resin and recycled aggregates. Unsaturated polyester resin, natural and recycled aggregates and fly ash were used. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes (5-10 and 5-25 mm) and unit binder contents (10% and 12%). Tests for the compressive and flexural strength, freezing and thawing and durability for 20% sulfuric solution were performed. The compressive and flexural strength of recycled polymer concrete were in the range of 85~97 MPa and 17.9~20.8 MPa, respectively. The strengths of recycled polymer concrete using recycled aggregate have similar or slightly decreased compared to polymer concrete using natural aggregate. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of recycled polymer concrete were in the range of 0.13~1.42% and 94~99, respectively.