• Title/Summary/Keyword: durability monitoring

Search Result 137, Processing Time 0.024 seconds

Temperature Analysis of PSC Box-girder Bridges Using Inverse Thermal Analysis Program (온도분포 역해석 프로그램을 이용한 PSC 박스거더 교량 단면의 온도 분포 해석)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Myung-Kue
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.95-101
    • /
    • 2006
  • It is well known that the thermal load in PSC(prestressed concrete) box-girder bridge is the principal cause of detrimental crack. The longitudinal stress caused by the lateral stress from the temperature gradient in slab of PSC box-girder bridge has a considerable influence on the durability and economy of bridge structures. As the basic study for the rational consideration of thermal load and the derivation of design guide, the inverse thermal analysis program for PSC box-girder bridges using field measurement data is developed. In this paper, thermal analyses are performed using field monitoring data for the sample PSC box-girder bridge. It is proposed that the link between monitoring program and the inverse analysis program is available.

Application of Acoustic Emission Technique for Detection of Crack in Mortar and Concrete (모르터와 콘크리트의 균열검출을 위한 음향방출기법의 적용)

  • 진치섭;신동익;장종철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.739-744
    • /
    • 2000
  • Concrete structures generally have cracks, so for the safety and durability of structures, studies to detect cracks using nondestructive tests have been treated in great deal. In order to assure the reliability of concrete structure, microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. The purpose of this study predicts location of initial crack and measures direction of crack propagation for on-line monitoring before the crack really grows in structures by using two-dimensional Acoustic Emission(AE) source location based on rectangular method with three-point bending test. This will allow efficient maintenance of concrete structure through monitoring of internal cracking based on AE method.

  • PDF

Structural Monitoring Using Fiber Optic Deformation Sensors (광섬유 변형 센서를 이용한 구조물의 모니터링)

  • Chung Wonseok;Lee Hee up;Kim Sungil;Kim Hyunmin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.109-114
    • /
    • 2005
  • Fiber optic sensors hold a great potential for structural monitoring due to their stability and durability. This paper deals with the applicability of long-gage deformation fiber optic sensors to prestressed concrete structures. Two sets of 3 m long-gage sensors are attached to the prestressed concrete girder with parallel topology. Using the quadratic regression of measured deformations over the length of sensors it is possible to extrapolate the deflection of the girder. The static response based on the developed method is compared with the results using conventional strain gages and LVDTs.

  • PDF

Monitoring and machinability evaluation in high-speed machining of high hardness steel(SKD11) (고경도강(SKD11)의 고속가공에서 가공성 평가 및 감시)

  • 김전하;김경균;강영창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.987-990
    • /
    • 2000
  • In modern manufacturing industry such as aerospace, vehicle and die/mold industry, the high hardness malarial which is remarkable in aspects of durability is effectively used. The high-speed and precision machining technology has been applied in these fields. In this study, efficient sensors in high-speed machining by observing similar tendency through comparing cutting force with AE signal, gap sensor signal and accelerometer signal are selected, and machinability of high-speed machining is experimentally evaluated. We performed a basic research for sensing system construction to monitor a machine tool and machining condition.

  • PDF

Development of a displacement measurement system for architectural structures using artificial intelligence techniques (인공지능 기법을 활용한 건축 구조물 변위측정시스템 개발)

  • Kang, Ye-Jin;Kim, Dae-Geon;Woo, Jong-Yeol;Lee, Dong-Oun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.135-136
    • /
    • 2022
  • As a recent technology, it is possible to partially grasp the occurrence of displacement of the entire building through artificial intelligence technology for big data through scanning. However, scanning and data processing take a lot of time, so there is a limit to constant monitoring, so constant monitoring technology of building behavior that combines wireless remote sensors and 3D shape scanning is required. Therefore, in this study, artificial intelligence program coding technology is linked. In addition, a technology capable of real-time wireless remote measurement of structure displacement will be developed through technology development in response to safety management that combines existing building technologies such as sensors. Through this, it is possible to establish an integrated management system for safety inspection and diagnosis.

  • PDF

The Feasibility Study on a High-Temperature Application of the Magnetostrictive Transducer Employing a Thin Fe-Co Alloy Patch

  • Heo, Tae-Hoon;Park, Jae-Ha;Ahn, Bong-Young;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.278-286
    • /
    • 2011
  • The on-line monitoring for the wall thinning in secondary system has been considered one of main issues for the safety of nuclear power plants. To establish the on-line monitoring technique for the pipe wall thinning, the development of the ultrasonic transducer working in high-temperature is very important. In this investigation, the magnetostrictive transducer is concerned for high temperature condition up to $300^{\circ}C$. The magnetostrictive transducer has many advantages such as high working temperature, durability, cost-effectiveness, and shear waves, most of all. A thin Fe-Co alloy patch whose Curie temperature is over $900^{\circ}C$ was employed as a ferromagnetic material for magnetostriction. Wave transduction experiments in various temperature were carried out and the effect of bias magnets was considered together with the dry coupling performance of the transducer. From experimental results, consequently, it was found that the magnetostrictive transducer works stable even in high temperature up to $300^{\circ}C$ and can be a promising method for the on-line monitoring of the wall thinning in nuclear power plants.

Nondestructive Damage Sensing and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소섬유 강화 Epoxyacrylate 복합재료의 UV 및 열경화에 따른 비파괴적 손상 감지능 및 경화 Monitoring)

  • Kong, Jin-Woo;Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.261-264
    • /
    • 2002
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermosetting composite with different curing processes was investigated using electro-micromechanical test. After curing, residual stress was monitored by measurement of electrical resistance (ER) and then it was compared to correlate with various curing processes. In thermal curing, curing shrinkage appeared significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient (TEC). The change in electrical resistance (ΔR) on thermal curing was higher than that on ultraviolet (UV) curing. For thermal curing, apparent modulus was the highest and reaching time until same strain was faster. So far thermal curing shows strong durability on the IFSS after boiling test.

  • PDF

Research and practice of health monitoring for long-span bridges in the mainland of China

  • Li, Hui;Ou, Jinping;Zhang, Xigang;Pei, Minshan;Li, Na
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.555-576
    • /
    • 2015
  • The large number of long-span bridges constructed in China motivates the applications of structural health monitoring (SHM) technology. Many bridges have been equipped with sophisticated SHM systems in the mainland of China and in Hong Kong of China. Recently, SHM technology has been extended to field test systems. In this view, SHM can serve as a tool to develop the methods of life-cycle performance design, evaluation, maintenance and management of bridges; to develop new structural analysis methods through validation and feedback from SHM results; and to understand the behavior of bridges under natural and man-made disasters, rapidly assess the damage and loss of structures over large regions after disasters, e.g., earthquake, typhoon, flood, etc. It is hoped that combining analytical methods, numerical simulation, small-scale tests and accelerated durability tests with SHM could become the main engine driving the development of bridge engineering. This paper demonstrates the above viewpoint.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method (Intermodulation 방법에 의한 자동차용 연료전지 스택의 실시간 진단방법 개발)

  • Lee, Young-Hyun;Yoo, Seungyeol;Kim, Jonghyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.76-83
    • /
    • 2014
  • During PEMFC(Proton Exchange Membrane Fuel Cell) operation monitoring and diagnosis are important issues for reliability and durability. Stack defect can be followed by a critical cell voltage drop in the stack. One method for monitoring the cell voltage is CVM(Cell Voltage Monitoring), where all cells in the stack are electrically connected to a voltage measuring system and monitored these voltages. The other methods are based on the EIS(Electrochemical Impedance Spectroscopy) and on nonlinear frequency response. In this paper, intermodulation(IM) method for diagnosis PEMFC stack is introduced. To detect one or more critical PEMFC cell voltage PEMFC stack is excited by two or more test sinusoid current, and the frequency response of the stack voltage is analyzed. If one or more critical cell voltage exists, higher harmonics on the voltage frequency spectrum will appear. For the proposed IM method, stack simulation and experiments are conducted.