• Title/Summary/Keyword: durability

Search Result 6,100, Processing Time 0.039 seconds

Effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation (금속-세라믹용 Pd-Cu-Ga-Zn계 합금의 모의 소성 시 냉각 속도가 석출 경화에 미치는 영향)

  • Kim, Min-Jung;Shin, Hye-Jeong;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • The effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation was investigated and the following results were obtained. When the cooling rate was fast (Stage 0), the hardness of the alloy increased at each firing step and the high hardness value was maintained. When the cooling rate was slow (Stage 3), the hardness was the highest at the first stage of the firing, but the final hardness of the alloy after complete firing was lower. The increase in hardness of the specimens cooled at the cooling rate of Stage 0 after each firing step was caused by precipitation hardening. The decrease in hardness of the specimens cooled at the cooling rate of Stage 3 after each firing step was attributed to the coarsening of the spot-like precipitates formed in the matrix and plate-like precipitates. The matrix and the plate-like precipitates were composed of the $Pd_2(Cu,Ga,Zn)$ phase of CsCl-type, and the particle-like structure was composed of the Pd-rich ${\alpha}$-phase of face-centered cubic structure. Through the porcelain firing process, Cu, Ga, and Zn, which were dissolved in Pd-rich ${\alpha}$ particles, precipitated with Pd, resulting in the phase separation of the Pd-rich ${\alpha}$ particles into the Pd-rich ${\alpha}^{\prime}$ particles and ${\beta}^{\prime}$ precipitates composed of $Pd_2(Cu,Ga,Zn)$. These results suggested that the durability of the final prosthesis made of the Pd-Cu-Ga-Zn alloy can be improved when the cooling rate is fast during porcelain firing simulation.

Basic Study for Selection of Factors Constituents of User Satisfaction for Micro Electric Vehicles (초소형전기차 사용자만족도 구성요인 선정을 위한 기반연구)

  • Jin, Eunju;Seo, Imki;Kim, Jongmin;Park, Jejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.581-589
    • /
    • 2021
  • With the recent increase in the introduction of micro-electric vehicles in Korea, interest in micro-electric vehicle user satisfaction is increasing to revitalize related markets. In this paper, a basic study was conducted on the development of public services using micro-electric vehicle based on the constituent factors of user satisfaction. The survey includes: ① 'Analytic Hierarchy Process (AHP) for selecting the priority factors of user satisfaction of micro-electric vehicles', ② 'A survey of micro-electric vehicles image' to collect data in advance for providing users' preferences and transportation services for micro-electric vehicles, ③ In order to investigate the user satisfaction level of users who actually operated micro-electric vehicles, the order of 'user satisfaction survey of micro-electric vehicle drivers' was conducted. In the Analytic Hierarchy Process (AHP) analysis, it was found that users regarded as important in the order of 'user utilization data', 'vehicle movement data', and 'charging service data'. In the micro-electric vehicle image survey, users perceived micro-electric vehicles more positively in terms of "safety", 'durability', 'Ride comfort', 'design', 'MOOE (Maintenance and other operating expense)', and 'environment-friendly' when comparing micro-electric vehicles with electric motorcycles. In the survey on the user satisfaction of micro-electric vehicle drivers, the use of micro-electric vehicle did not directly affect work performance efficiency, and there was an experience of being disadvantaged on the road due to the size of the micro-electric vehicle, and driving in a cluster of micro-electric vehicle for outdoor advertisements. The city's public relations effect was great, but it was concerned about safety. In the future, based on the results of this study, we plan to build a user satisfaction structural equation model, preemptively discover feedback R&D for micro-electric vehicle utilization services in the public field, and actively seek to discover new public mobility support services.

Preparation of Halloysite-Based Tubular Media for Enhanced Methylene Blue Adsorption (메틸렌 블루 흡착능 향상을 위한 할로이사이트 기반 튜브형 담체 연구)

  • Jeon, Junyeong;Cho, Yebin;Kim, Jongwook;Shin, Seung Gu;Jeon, Jong-Rok;Lee, Younki
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.359-366
    • /
    • 2021
  • Halloysite nanotubes (HNTs), the multiwalled clay mineral with the composition of Al2Si2O5(OH)4·nH2O, have been highlighted as a low-cost adsorbent for the removal of dyes from wastewater. Although a powder of halloysite presents a high specific surface area, forming media are significantly considered due to sludge-clogging induced by the water-bound agglomeration. However, higher firing temperature to achieve the structural durability of the media and lower utilization rate due to longer penetration depth into the media act as hurdles to increase the dye-adsorption capacity. In this work, the retention of the adsorption capacity of halloysite was evaluated with methylene blue solution after the heat treatment at 750 ℃. In order to improve the utilization rate, tubular media were fabricated by extrusion. The images taken by transmission electron microscopy show that HNTs present excellent structural stability under heat treatment. The HNTs also provide superb capacity retention for MB adsorption (93%, 18.5 mg g-1), while the diatomite and Magnesol® XL show 22% (7.65 mg g-1) and 6% (11.7 mg g-1), respectively. Additionally, compositing with lignin enhances adsorption capacity, and the heat treatment under the hydrogen atmosphere accelerates the adsorption in the early stage. Compared to the rod-type, the tubular halloysite media rapidly increases methylene blue adsorption capacity.

Disease Reaction of a Japonica Rice, Keumo3, and Detection of a Linked DNA Marker to Leaf Blast Resistance ("금오3호"의 벼 잎도열병 저항성 특성 및 저항성 연관 마커 탐색)

  • Lee, Jong-Hee;Kwak, Do-Yeon;Pakr, Dong-Soo;Roh, Jae-Hwan;Kang, Jong-Rae;Kim, Choon-Song;Jeon, Myeong-Gi;Yeo, Un-Sang;Yi, Gihwan;Shin, Mun-Sik;Oh, Byeong-Geun;Hwang, Hung-Goo
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.408-413
    • /
    • 2008
  • Rice blast resistance is considered one of the most important traits in rice breeding and the disease, caused by Magnaporthe grisea Barr, has brought significant crop losses annually. Moreover, breakdown of resistance normally occurs in two to five years after cultivar release, thus a more durable resistance is needed for better control of this disease. We developed a new variety, Keumo3, which showed strong resistance to leaf blast. It was tested in 2003 to 2007 at fourteen blast nursery sites covering entire rice-growing regions of South Korea. It showed resistance reactions in 12 regions and moderate in 2 regions without showing susceptible reactions. Durability test by sequential planting method indicated that this variety had better resistance. Results showed that Keumo3 was incompatible against 19 blast isolates with the exception of KI101 by artificial inoculation. To understand the genetic control of blast resistance in rice cultivar Keumo3 and facilitate its utilization, recombinant inbred lines (RIL) consisting of 290 F5 lines derived from Akidagomachi/Keumo3 were analyzed and genotyped with Pizt InDel marker zt56591. The recombination value between the marker allele of zt56591 and bioassay data of blast nursery test was 1.1%. These results indicated that MAS can be applied in selecting breeding populations for blast resistance using zt56591 as DNA marker.

Analysis of Heat Transfer Characteristics on Multi-layer Insulating Curtains Coated with Silica Aerogel (실리카 에어로겔이 흡착된 다겹보온커튼의 전열 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2019
  • The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.

A re-appraisal of scoring items in state assessment of NATM tunnel considering influencing factors causing longitudinal cracks (종방향균열 영향인자 분석을 통한 NATM터널 정밀안전진단 상태평가 항목의 재검토)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • State assessment of an operational tunnel is usually done by performing visual inspection and durability tests by following the detailed guideline for safety inspection (SI) and/ or precision inspection for safety and diagnosis (PISD). In this study, 12 NATM tunnels, which have been operational for more than 10 years, were inspected to figure out the cause of longitudinal cracks for the purpose of modifying the scoring items in the state assessment NATM tunnel related to the longitudinal crack and the thickness of concrete lining. All investigated tunnels were classified into four groups depending on the shape and usage of each tunnel. The causes of longitudinal crack occurrence were analyzed by investigating the correlations between the longitudinal crack and the following four factors: the patterns of ground excavation; construction state of primary support system; characteristics of material properties of the concrete lining; and thickness of lining which was obtained by Ground Penetration Radar (GPR) tests. It was found that influencing factors causing longitudinal cracks in the lining were closely related with the construction condition of the primary support system, i.e. shotcrete, rockbolt, and steel-rib; crack occurrences were not much affected by the excavation patterns. As for the properties of concrete lining materials, occurrence of the longitudinal crack was mostly affected by the following three items: w/c ratio; contents of cement; and strength of lining. When estimating the lining thickness of the concrete lining by GPR tests and taking thickness effect into account in the statement assessment, it was concluded that increase of the index score by an average of 0.03 (ranging from 0.01 up to 0.071) is needed; a more realistic way of state assessment should be proposed in which the increased index score caused by lack of lining thickness should be taken into account.

Evaluation of Musculoskeletal Disease Risk Assessment and User Satisfaction in Accordance With Using Front-Entry Sitting Toilet for Wheelchair Users (휠체어 사용자의 전면진입착석 화장실 사용에 따른 근골격계질환 위험성 및 만족도 평가)

  • Park, Je-Mo;Hwang, Do-Yeon;Kim, Hee-Dong;Chung, Hyun-Ae;Jung, Hwa-Shik
    • Korean Journal of Occupational Therapy
    • /
    • v.26 no.4
    • /
    • pp.73-84
    • /
    • 2018
  • Objective : The purpose of this study was to promote R&D of toilet design for the disabled by evaluating the Front-entry sitting toilet applied it to actual wheelchair users to examine the possibility of their application as a toilet that is low physical demanding and high satisfaction. Methods : Forty wheelchair users were asked to demonstrate using Front-entry sitting toilet after collecting the general characteristics and their current wheelchair usage information. Musculoskeletal disease risk assessment and user satisfaction were evaluated throughout Rapid Entire Body Assessment(REBA), Quebec Evaluation of Satisfaction with assistive Technology 2.0(QUEST) and subjective opinion questionnaire. Results : Statistical result showed that REBA scores($3.18{\pm}.38$) of Front-Entry Sitting Toilet were significantly lower(z=-5.930, p<.05) than the conventional toilet($6.53{\pm}1.15$). Overall, user satisfaction ratings were high with detailed scores were high in order of durability($4.48{\pm}.62$), safety($4.38{\pm}.63$), necessity($4.33{\pm}.73$) and universal ($4.6{\pm}.61$). Subjective opinion survey showed most were 'it was convenient to not have to rotate(30.8%).' Conclusion : This study found that Front-entry sitting toilet was highly likely to reduce the risk of musculoskeletal disorders and users' satisfactions were high. Through this study, we hope to expand the scope of occupational therapists and contribute to the physical, mental and social health in the daily activities of the people by applying various approaches.

Assessment of Fire-Damaged Mortar using Color image Analysis (색도 이미지 분석을 이용한 화재 피해 모르타르의 손상 평가)

  • Park, Kwang-Min;Lee, Byung-Do;Yoo, Sung-Hun;Ham, Nam-Hyuk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.83-91
    • /
    • 2019
  • The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from $100^{\circ}C$ to $1000^{\circ}C$. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of $400^{\circ}C$. However there was a sudden decrease in strength at the temperature above $500^{\circ}C$, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature $700^{\circ}C$ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of $L^*a^*b$ color analysis show that $b^*$ increases rapidly after $700^{\circ}C$. It is analyzed that the intensity of yellow becomes strong after $700^{\circ}C$. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after $700^{\circ}C$. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow($b^*$ or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.

Techniques and Traditional Knowledge of the Korean Onggi Potter (옹기장인의 옹기제작기술과 전통지식)

  • Kim, Jae-Ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.2
    • /
    • pp.142-157
    • /
    • 2015
  • This study examines how traditional knowledge functions in the specific techniques to make pottery in terms of the traditional knowledge on the pottery techniques of Onggi potters. It focuses on how traditional pottery manufacturing skills are categorized and what aspects are observed with regard to the techniques. The pottery manufacturing process is divided into the preparation step of raw material, the molding step of pottery, and the final plasticity step. Each step involves unique traditional knowledge. The preparation step mainly comprises the knowledge on different kinds of mud. The knowledge is about the colors and properties of mud, the information on the regional distribution of quality mud, and the techniques to optimize mud for pottery manufacturing. The molding step mainly involves the structure and shape of spinning wheels, the techniques to accumulate mud, ways to use different kinds of tools, the techniques to dry processed pottery. The plasticity step involves the knowledge on kilns and the scheme to build kilns, the skills to stack pottery inside of the kilns, the knowledge on firewood and efficient ways of wood burning, the discrimination of different kinds of fire and the techniques to stoke the kilns. These different kinds of knowledge may be roughly divided into three categories : the preparation of raw material, molding, and plasticity. They are closely connected with one another, which is because it becomes difficult to manufacture quality pottery even with only one incorrect factor. The contents of knowledge involved in the manufacturing process of pottery focused are mainly about raw material, color, shape, distribution aspect, fusion point, durability, physical property, etc, which are all about science. They are rather obtained through the experimental learning process of apprenticeship, not through the official education. It is not easy to categorize the knowledge involved. Most of the knowledge can be understood in the category of ethnoscience. In terms of the UNESCO world heritage of intangible cultural assets, the knowledge is mainly about 'the knowledge on nature and universe'. Unique knowledge and skills are, however, identified in the molding step. They can be referred to 'body techniques', which unify the physical stance of potters, tools they employ, and the conceived pottery. Potters themselves find it difficult to articulate the knowledge. In case stated, it cannot be easily understood without the experience and knowledge on the field. From the preparation of raw material to the complete products, the techniques and traditional knowledge involved in the process of manufacturing pottery are closely connected, employing numerous categories and levels. Such an aspect can be referred to as a 'techniques chain'. Here the techniques mean not only the scientific techniques but also, in addition to the skills, the knowledge of various techniques and levels including habitual, unconscious behaviors of potters.

A Review on Treasure No.1167, Unified Silla Buddhist Bell from Uncheon-dong, Cheongju, about Its Form and Conservational Scientific Features (보물 제1167호 청주 운천동 출토 통일신라 범종의 형태와 보존과학적 특성 고찰)

  • Kim, Hyun-jeong;Kim, Su-gi
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.357-386
    • /
    • 2007
  • At present, thirteen Buddhist bells of Unified Silla are known to the world: Six in Korea, five in Japan and two other bells, and three out of them are impossible to make out its original form. Therefore, we divided the form of Unified Silla Buddhist bells based on the ten other bells, and we tried out to prove the manufacturing technology by the comparison of the research material of Uncheon-dong bell and existing research materials of other bells, in other to find their linkage based on the alloy elemental composition. We divided Unified Silla Buddhist bell into two types: Type I has symmetric apsaras and regular patterns on its face and it was made in early Silla period; type II has asymmetric apsaras and irregular pattern arrangement and made in late Silla period. In particular, Uncheon-dong Buddhist bells is very similar to Komyoji[光明寺] temple bell from ninth century in Japan. It is peculiar that the apsaras on Uncheon-dong bell play vertical music instruments that are never seen in Unified Silla Buddhist bell. Most of Unified Silla Buddhist bell are compounded with Cu-Sn or Cu-Sn-Pb system. From eighth and ninth century, bells were cast with even composition of copper, tin and lead, and the bronze alloy ratio was similar to the record in Gogonggi[考工記], Jurye[周禮], a book from ancient China. Particularly, Uncheon-dong bell is in a rare case of Cu-Sn-Pb-As system. As had been rarely used in Unified Silla Buddhist bells, so we presented the relative research materials. As has the same nature as Pb. Because As easily volatilize at high temperature, it is hard to use. But it has its merit of solidity and durability. Pb enhances fluidity and thereby expresses the patterns more distinct; As makes the bell stronger. The result of lead isotope ratio could not exactly reveal a concrete producing center. However, over the analysis of our samples, hereby we suggest Uncheon-dong bell was made of materials from just one ore deposit.