• Title/Summary/Keyword: ductile failure

Search Result 379, Processing Time 0.029 seconds

No Collapse Design for Typical Bridges (일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.163-172
    • /
    • 2014
  • The purpose of earthquake resistant design for typical bridges is the No Collapse Design and the Earthquake Resistant Design Part of Roadway Bridge Design Code provides a design process to construct the Ductile Failure Mechanism for the bridge structure. However, if it is not practical to provide the Ductile Failure Mechanism due to structure types or site conditions, the Brittle Failure Mechanism is an alternative way to get the No Collapse Design. As well as the existing design process constructing the Ductile Failure Mechanism, the Earthquake Resistant Design Part provides a ductility-based design process as an appendix, which is prepared for bridges with reinforced concrete piers. According to the new design process, designer determines a required response modification factor for substructure and transverse reinforcement for confinement therefrom. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected for which the existing as well as the ductility-based design processes are applied and different results from the two design processes are identified. Based on the results, an earthquake resistant design procedure is proposed in which designers should consider the two design processes.

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

The Performance of Shear Strengthened Reinforced Concrete Columns with Carbon Fiber Sheets (탄소섬유시트로 전단 보강된 철근콘크리트 기둥의 성능 평가)

  • 강경원;하상수;나정민;이용택;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.733-736
    • /
    • 1999
  • R/C columns, one of the main structural members of reinforced concrete structures, usually sustain the axial forces of combined dead loads and live loads. When subjected to lateral loads, however, they are repeatedly subjected to bending moment, shearing forces and brittle failure such as shear failure can occur. This failure mode is not desirable and extra reinforcement is usually needed to induce a ductile failure. The design equation which is used to evaluate the maximum shear strength of a R/C column is still unsatisfactory. The objective of this study was, therefore, to evaluate the hysteretic strengthening effect and the maximum shear strength of R/C columns strengthened using carbon fibers on the seismic performance of the R/C columns under anti-symmetrical by acting moment. According to this study, it may be suggested that the shear of the strengthened R/C column were adequate to induce ductile failures.

  • PDF

Establishment for Failure Criterion of Adhesively Bonded Joint (접착이음의 파괴 기준 설정을 위한 연구)

  • 이강용;공병석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.183-190
    • /
    • 2000
  • The objective of this work is to develop a criterion for predicting the failure strength of the joints bonded by ductile adhesives. To obtain a criterion, first, fracture tests were carried out for T-peel joint and Single-lap joint with widely differing joints geometries. Then using the fracture loads obtained at tests, the finite element analysis were performed, in which the stresses in the adhesive bonds were calculated in great detail. After examining four epoxy adhesives, it is concluded that the fracture of adhesively bonded joint occurs when the maximum of the ratio of the mean to effective stresses exceeds a constant value which can be determined from analysis and test for each adhesive.

  • PDF

Finite Element Ductile Failure Simulations of Tensile and Bend Bars made of API X65 Steels (API X65 강의 인장 및 굽힘 시편에 대한 유한요소 연성파괴 해석)

  • Oh, Chang-Kyun;Jin, Te-Eun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1696-1701
    • /
    • 2007
  • This paper presents a micro-mechanical model of ductile fracture for the API X65 steel using the Gurson-Tvergaard-Needleman (GTN) model. Experimental tests and FE damage simulations using the GTN model are performed for smooth and notched tensile bars, from which the parameters in the GTN model are calibrated. As application, the developed GTN model is applied to simulate small-sized, single-edge-cracked tensile and bend bars, via three-dimensional FE damage analyses. Comparison of FE damage analysis results with experimental test data shows overall good agreements.

  • PDF

Analysis of the Failure Stress in Pyrotechnically Releasable Mechanical Linking Device

  • Lee, Yeung-Jo;Kim, Dong-Jin;Kang, Won-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.813-822
    • /
    • 2008
  • The present work has been developed the interpretation processor including analysis of the failure stress in pyrotechnically releasable mechanical linking device, which has the release characteristic without fragmentation and pyro-shock, using SoildWorks, COSMOS Works and ANSYS programs. The aim of the invention is to propose a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. The pyrotechnically releasable mechanical linking device according to the invention is simple, compact and inexpensive in structure. It is simple to implement and permit the use of only a reduced quantity of pyrotechnic composition, such composition possibly being devoid of any primary explosive at all. The present work is only focused on the design of structure and the material characteristics. To analyze the fracture morphology resulted from tensile test in the different ball type bolts, the present work has been performed to estimate the failure stress of material and to make the same result from tensile test. The failure stress of SUS 630 in ductile material is approximately 1050 Mpa. The failure stress of SUS 420 in brittle material is about 1790 Mpa. Among the models used the ductile material, the model 6 is suitable a design of structure compared to that of other models. The use of this interpretation processor developed the present work could be extensively helped to estimate the failure stress of material having a complex geometry such as the ball type bolt

  • PDF

Ductile Failure Simulation of Tensile Plates with Multiple Through-Wall Cracks Based on Damage Mechanics (유한요소 손상 해석을 이용한 다중 관통균열 인장시편의 연성 파괴 시뮬레이션)

  • Jeon, Jun-Young;Kim, Nak-Hyun;Oh, Chang-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.245-252
    • /
    • 2012
  • This paper proposes a simple numerical method, based on the stress-modified fracture strain-damage model with the stress-reduction technique, for predicting the failure behaviors of ductile plates with multiple through-wall cracks. This technique is implemented using the user-defined subroutines provided in ABAQUS. For validation, the results simulated using the proposed method are compared with published experimental data of Japanese researchers.

Evaluation of press formability for Ti-6Al-4V sheet at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 성형성 평가)

  • Bae, M.K.;Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.152-157
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. But the database is insufficient of the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hocker's punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature below and vice versa neck-induced failure above the recrystalization temperature $0.5T_m$. The formability of Ti-6Al-4V titanium alloy sheet at $750^{\circ}C$ increases about 7 times compared with that at room temperature.

  • PDF

A Machine Learning Program for Impact Fracture Analysis (머신러닝을 이용한 충격파면 해석에 관한 연구)

  • Lee, Seung-Jin;Kim, Gi-Man;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.95-102
    • /
    • 2021
  • Analysis of the fracture surface is one of the most important methods for determining the cause of equipment structural failure. Whether structural failure is caused by impact or fatigue is necessary information in industrial fields. For ferrous and non-ferrous metal materials, two fracture phenomena are generated on the fracture surface: ductile and brittle fractures. In this study, machine learning predicts whether the fracture is based on ductile or brittle when structurural failure is caused by impact. The K-means algorithm calculates this ratio by clustering the brittle and ductile fracture data from a photograph of the impact fracture surface, unlike the existing method, which calculates the fracture surface ratio by comparison with the grid type or the reference fracture surface shape.