• Title/Summary/Keyword: dual sensing

Search Result 150, Processing Time 0.018 seconds

Improvement of Sense Mode Bandwidth of Vibratory Silicon-On-Glass Gyroscope Using Dual-Mass System (이중 질량체를 사용한 진동형 자이로스코프의 검출부 대역폭 개선)

  • Hwang, Yong-Suk;Kim, Yong-Kweon;Ji, Chang-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1733-1740
    • /
    • 2011
  • In this research, a MEMS vibratory gyroscope with dual-mass system in the sensing mode has been proposed to increase the stability of the device using wide bandwidth. A wide flat region between the two resonance peaks of the dual-mass system removes the need for a frequency matching typically required for single mass vibratory gyroscopes. Bandwidth, mass ratio, spring constant, and frequency response of the dual-mass system have been analyzed with MATLAB and ANSYS simulation. Designed first and second peaks of sensing mode are 5,917 and 8,210Hz, respectively. Driving mode resonance frequency of 7,180Hz was located in the flat region between the two resonance peaks of the sensing mode. The device is fabricated with anodically bonded silicon-on-glass substrate. The chip size is 6mm x 6mm and the thickness of the silicon device layer is $50{\mu}m$. Despite the driving mode resonance frequency decrease of 2.8kHz and frequency shift of 176Hz from the sensing mode due to fabrication imperfections, measured driving frequency was located within the bandwidth of sensing part, which validates the utilized dual-mass concept. Measured bandwidth was 768Hz. Sensitivity calculated with measured displacement of driving and sensing parts was 22.4aF/deg/sec. Measured slope of the sensing point was 0.008dB/Hz.

Low Power Flip-Flop Circuit with a Minimization of Internal Node Transition (인터널 노드 변환을 최소화시킨 저전력 플립플롭 회로)

  • Hyung-gyu Choi;Su-yeon Yun;Soo-youn Kim;Min-kyu Song
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • This paper presents a low-power flip-flop(FF) circuit that minimizes the transition of internal nodes by using a dual change-sensing method. The proposed dual change-sensing FF(DCSFF) shows the lowest dynamic power consumption among conventional FFs, when there is no input data transition. From the measured results with 65nm CMOS process, the power consumption has been reduced by 98% and 32%, when the data activity is 0% and 100%, respectively, compared to conventional transmission gate FF(TGFF). Further, compared to change-sensing FF(CSFF), the power consumption of proposed DCSFF is smaller by 30%.

Dual Sensing with Voltage Shifting Scheme for High Sensitivity Touch Screen Detection (고감도 터치스크린 감지를 위한 양방향 센싱과 전압쉬프팅을 이용한 센싱 기법)

  • Seo, Incheol;Kim, HyungWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.71-79
    • /
    • 2015
  • This paper proposes a new touch screen sensing method that improves the drawback of conventional single-line sensing methods for mutual capacitance touch screen panels (TSPs). It introduces a dual sensing and voltage shifting method, which reduces the ambient noise effectively and enhances the touch signal strength. The dual sensing scheme reduces the detection time by doubling the integration speed using both edges of excitation pulse signals. The voltage shifting method enhances the signal-to-noise ratio (SNR) by increasing the voltage range of integrations, and maximizing the ADC's input dynamic range. Simulation and experimental results using a commercial 23" large touch screen show an SNR performance of 43dB and a scan rate 2 times faster than conventional schemes - key properties suited for a large touch screen panels. We implemented the proposed method into a TSP controller chip using Magnachip's CMOS 0.18um process.

A Pacemaker AutoSense Algorithm with Dual Thresholds

  • Kim, Jung-Kuk;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A pacemaker autosense algorithm with dual thresholds. one for noise or tachyarrhythmia detection (noise threshold, NT) and the other for intrinsic beat detection (sensing threshold. ST), was developed to improve the sensing performance in single pass VDD electrograms. unipolar electrograms, or atrial fibrillation detection. When a deflection in an electrogram exceeds the NT (defined as 50% of 57), the autosense algorithm with dual thresholds checks if the deflection also exceeds the ST. If it does, the autosense algorithm calculates the signal to noise ratio (SNR) of the deflection to the highest deflection detected by NT but lower than ST during the last cardiac cycle. If the SNR 2, the autosense algorithm declares an intrinsic beat detection and calculates the next ST based on the three most recent intrinsic peaks. If the SNR $\geq$2, the autosense algorithm checks the number of deflections detected by NT during the last cardiac cycle in order to determine if it is a noise detection or tachyarrhythmia detection. Usually the autosense algorithm tries to set the 57 at 37.5% of the average of the three intrinsic beats, although it changes the percentage according to event classifications. The autosense algorithm was tested through computer simulation of atrial electrograms from 5 patients obtained during EP study, to simulate a worst sensing situation. The result showed that the ST levels for autosense algorithm tracked the electrogram amplitudes properly, providing more noise immunity whenever necessary. Also, the autosense algorithm with dual thresholds achieved sensing performance as good as the conventional fixed sensitivity method that was optimized retrospectively.

Deign of Small-Area Dual-Port eFuse OTP Memory IP for Power ICs (PMIC용 저면적 Dual Port eFuse OTP 메모리 IP 설계)

  • Park, Heon;Lee, Seung-Hoon;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.310-318
    • /
    • 2015
  • In this paper, dual-port eFuse OTP (one-time programmable) memory cells with smaller cell sizes are used, a single VREF (reference voltage) is used in the designed eFuse OTP IP (intellectual property), and a BL (bit-line) sensing circuit using a S/A (sense amplifier) based D F/F is proposed. With this proposed sensing technique, the read current can be reduced to 3.887mA from 6.399mA. In addition, the sensing resistances of a programmed eFuse cell in the program-verify-read and read mode are also reduced to $9k{\Omega}$ and $5k{\Omega}$ due to the analog sensing. The layout size of the designed 32-bit eFuse OTP memory is $187.845{\mu}m{\times}113.180{\mu}m$ ($=0.0213{\mu}m2$), which is confirmed to be a small-area implementation.

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.47-60
    • /
    • 2017
  • The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

Dual-function Dynamically Tunable Metamaterial Absorber and Its Sensing Application in the Terahertz Region

  • Li, You;Wang, Xuan;Zhang, Ying
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.252-259
    • /
    • 2022
  • In this paper, a dual-function dynamically tunable metamaterial absorber is proposed. At frequency points of 1.545 THz and 3.21 THz, two resonance peaks with absorption amplitude of 93.8% (peak I) and 99.4% (peak II) can be achieved. By regulating the conductivity of photosensitive silicon with a pump laser, the resonance frequency of peak I switches to 1.525 THz, and that of peak II switches to 2.79 THz. By adjusting the incident polarization angle by rotating the device, absorption amplitude tuning is obtained. By introducing two degrees of regulation freedom, the absorption amplitude modulation and resonant frequency switching are simultaneously realized. More importantly, dynamic and continuous adjustment of the absorption amplitude is obtained at a fixed resonant frequency, and the modulation depth reaches 100% for both peaks. In addition, the sensing property of the proposed MMA was studied while it was used as a refractive index sensor. Compared with other results reported, our device not only has a dual-function tunable characteristic and the highest modulation depth, but also simultaneously possesses fine sensing performance.

Fabrication and Characteristics of SAW Gas Sensor (SAW 가스센서의 제작 및 특성)

  • Jun, C.B.;Park, H.D.;Choi, D.H.;Lee, D.D.
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.40-45
    • /
    • 1994
  • $112^{\circ}$ rot. x-cut $LiTaO_{3}$ wafer was used as the substrate of SAW gas sensor. Dual delay line SAW device with IDTs which consist of the reference delay line and the sensing delay line was fabricated using photolithigraphy. Each IDTs had 10 finger pairs and finger spacing is 10 microns. One delay line channel is the reference, while the second is the sensing channel with Pb-phthalocyanine film in the propagation path. Pb-phthalocyanine film which is p-type organic semiconductor was evaporated in $10^{-5}$ torr vacuum using shadow mask selectively. Dual delay line oscillator was constructed by using the rf amplifier and AGC. Frequency of the IDTs had the range of $87{\sim}$89 MHz oscillation frequency. Oscillation frequency shifts were investigated as a function of the temperature and the concentration of $NO_{2}$ gas.

  • PDF

An Exponential Smoothing Adaptive Failure Detector in the Dual Model of Heartbeat and Interaction

  • Yang, Zhiyong;Li, Chunlin;Liu, Yanpei;Liu, Yunchang;Xu, Lijun
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • In this paper, we propose a new implementation of a failure detector. The implementation uses a dual model of heartbeat and interaction. First, the heartbeat model is adopted to shorten the detection time, if the detection process does not receive the heartbeat message in the expected time. The interaction model is then used to check the process further. The expected time is calculated using the exponential smoothing method. Exponential smoothing can be used to estimate the next arrival time not only in the random data, but also in the data of linear trends. It is proven that the new detector in the paper can eventually be a perfect detector.

Vibration Control of the Rotation Position Mechanism with Dual Actuator for High Precision Control (고속/고정밀 위치 제어를 위한 이중 구동기를 이용한 회전 이송기구의 진동 제어)

  • Lee, Yong-Gwon;Jo, Won-Ik;Yang, Hyeon-Seok;Park, Yeong-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 2001
  • In this paper, a novel dual-type positioning mechanism using a voice coil motor(VCM) and a piezoelectric actuator is proposed for optical disk drive or near-field recording type drive. The VCM is used for a coarse motion actuator and the piezoelectric actuator, "S" configuration deflection motion when voltage applied, is used for a fine motion actuator with self-sensing technique, which allows it to sense and actuate simultaneously in a closed loop frame work. When the VCM rotates and stops, a position feedback control algorithm is adopted to further control residu vibration. The performance of the control scheme is confirmed through simulations and experiments.

  • PDF