• Title/Summary/Keyword: dual high-frequency half-bridge converter

Search Result 6, Processing Time 0.023 seconds

Split-Capacitor Dual-Active-Bridge Converter (Split-Capacitor Dual-Active-Bridge 컨버터)

  • Kim, Kisu;Park, Siho;Cha, Honnyong;Choi, Byungcho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.352-358
    • /
    • 2018
  • A split-capacitor (SC) dual-active-bridge (DAB) converter is proposed in this study. The DC-link capacitors of input and output are split in the proposed converter. The primary and secondary windings of transformer are connected to the midpoints of the DC-links. Hence, the SC DAB converter can inherently prevent transformer from saturation. Although the switch current stress of the proposed converter is twice that of the conventional DAB converter, the switch voltage stress is reduced by half. Therefore, the proposed converter can reduce switching loss and achieve high efficiency in a high switching frequency. Given the SC structure, the proposed converter can readily be connected to neutral-point-clamped- or half-bridge-type converters. The topology of the proposed converter is presented and the operating principle is analyzed in detail. A 3-kW hardware prototype was built and tested to verify the performance of the proposed converter.

A Charging Circuit for the Power Stotage of Wind Power Generation (풍력발전의 전력저장을 위한 충전회로)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Han, Byoung-Sung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.635-644
    • /
    • 2002
  • Many generating units can be in parallel connection to one battery and inverter. However, one of the biggest problems we encountered is that wind speed is fluctuated sharply in accordance with the unstable weather conditions. To solve this problem, we need energy storage equipment such as storage lead-acid battery. We design a system and analyze its modeling so that it supplies a stable power to the load through DC-AC inverter part. In this paper, we applied dual step-up/down buck-boost converter and dual high-frequency half-bridge converter to the proposed system. These converters are used to store energy in the battery regardless of the change of the wind speed. The operation process of two proposed types of converters for high-power battery charging is discussed along with simulation and experimental result. We design a charging circuit which is applicable in the actual wind power generation system for 30kw and confirm the circuit's validity.

A Novel Utility AC Frequency to High Frequency AC Power Converter with Boosted Half-Bridge Single Stage Circuit Arrangement

  • Saha, Bishwajit;Kwon, Soon-Kurl;Koh, Hee-Seog;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.387-390
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit Incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

A New Active Lossless Snubber for Half-Bridge Dual Converter (하프 브릿지 듀얼 컨버터를 위한 새로운 능동형 무손실 스너버)

  • 한상규;윤현기;문건우;윤명중;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.419-426
    • /
    • 2002
  • A new active lossless snubber for half-bridge dual converter(that is called'dual converter') is proposed in this paper It features soft switching(ZVS) as well as turn-off snubbing in both main and auxiliary switches. Therefore, it helps the dual converter to operate at the higher frequency with a higher efficiency and smaller-sized reactive components. Moreover, since it uses parasitic components, such as leakage inductances and switch output capacitances etc, to achieve the ZVS of power switches, it has simpler structure and lower cost of production. The operational principle, theoretical analysis, and design consideration are presented. To confirm the operation, features, and validity of the proposed circuit, experimental results from a 200w, 24V/DC-200V/DC proto-type are presented.

A Novel Power Frequency Changer Based on Utility AC Connected Half-Bridge One Stage High Frequency AC Conversion Principle

  • Saha Bishwajit;Koh Kang-Hoon;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.203-205
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF