• 제목/요약/키워드: dual cured resin cement

검색결과 25건 처리시간 0.021초

The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements

  • Barutcigil, Kubilay;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권2호
    • /
    • pp.61-66
    • /
    • 2020
  • PURPOSE. The aim of the present study was to determine the degree of conversion of light- and dual-cured resin cements used in the cementation of all-ceramic restorations under different thicknesses of translucent (T) and high-translucent (HT) polymer-infiltrated ceramic-network (PICN) material. MATERIALS AND METHODS. T and HT PICN blocks were prepared at 0.5, 1.0, 1.5, and 2.0 mm thicknesses (n=80). Resin cement samples were prepared with a diameter of 6 mm and a thickness of 100 ㎛. Light-cured resin cement was polymerized for 30 seconds, and dual-cure resin cement was polymerized for 20 seconds (n=180). Fourier transform infrared spectroscopy (FTIR) was used for degree of conversion measurements. The obtained data were analyzed with ANOVA and Tukey HSD, and independent t-test. RESULTS. As a result of FTIR analysis, the degree of conversion of the light-cured resin cement prepared under 1.5- and 2.0-mm-thick T and HT ceramics was found to be lower than that of the control group. Regarding the degree of conversion of the dual-cured resin cement group, there was no significant difference from the control group. CONCLUSION. Within the limitation of present study, it can be concluded that using of dual cure resin cement can be suggested for cementation of PICN material, especially for thicknesses of 1.5 mm and above.

Microhardness of resin cements after light activation through various translucencies of monolithic zirconia

  • Pechteewang, Sawanya;Salimee, Prarom
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권4호
    • /
    • pp.246-257
    • /
    • 2021
  • PURPOSE. This study aimed to investigate the Vickers Hardness Number (VHN) of light- and dual cured resin cements cured through monolithic zirconia specimens (VITA YZ) of various translucencies: translucent (T); high translucent (HT); super translucent (ST); and extra translucent (XT) at 0, 24, and 48 h after curing. MATERIALS AND METHODS. Four zirconia specimens from each translucency were prepared. Two light-cured resin cements (Variolink N LC; VL and RelyX Veneer; RL) and two dual-cured resin cements (Variolink N DC; VD and RelyX U200; RD) were used. The cement was mixed and loaded in a mold and cured for 20 s through the zirconia specimen. The upper surface of cements was tested for VHN using a microhardness tester at 0, 24, and 48 h after curing. The VHN were analyzed using two-way repeated, Brown-Forsythe ANOVA with Games Howell post-hoc analysis and independent t-tests (P < .05). RESULTS. All cements showed significantly higher VHN from 0 h to 24 h (P < .001). At 48 h, the VHN of light-cured cements were significantly lower when cured under the T groups than under XT groups (P = .001 in VL, P = .014 in RL). At each post curing time of each translucency, VD showed higher VHN than VL (P < .05), and RD also showed higher VHN than RL (P < .05). CONCLUSION. The translucency of zirconia has an effect on the VHN for light-cured resin cements, but has no effect on dual-cured resin cements. Dual-cured resin cement exhibited higher VHN than the light-cured resin cement from the same manufacturer. All resin cements showed significantly higher VHN from 0 h to 24 h.

지르코니아 투명도 및 두께에 따른 레진 시멘트의 중합률 (The degree of conversion of dual-cured resin cement as a function of transmittance and thickness)

  • 노형록;주규지;선금주
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.193-199
    • /
    • 2016
  • Purpose: The purpose of this study was to know of photopolymerization effect of self-etch dual-cured resin cement on different transmittance and thickness of zirconia disks. Methods: The two types of transparent and opaque zirconia speciments were prepared. The five speciments of each groups were seperated with 0.5mm and 1.0mm thickness. Degree of conversion(DC) were studied by FT-IR spectroscopy using ATR method before and after irradidaion for 40 sec. Results: The relative DC was showed the higher results of ZS5 as compared with ZS10 (p < 0.05). And OP5 and OP10 were lower results than ZS10 (p < 0.05). Conclusion: The photopolymerization effect of dual-cured resin cement were affected by the transmittance and thickness of zirconia.

도재인레이 하방에서 광중합형 복합레진과 이중중합형 복합레진시멘트의 미세경도와 중합률에 관한 연구 (THE MICROHARDNESS AND THE DEGREE OF CONVERSION OF LIGHT CURED COMPOSITE RESIN AND DUAL CURED RESIN CEMENTS UNDER PORCELAIN INLAY)

  • 김승수;조성식;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제25권1호
    • /
    • pp.17-40
    • /
    • 2000
  • Resin cements are used for cementing indirect esthetic restorations such as resin or porcelain inlays. Because of its limitations in curing of purely light cured resin cements due to attenuation of the curing light by intervening materials, dual cured resin cements are recommended for cementing restorations. The physical properties of resin cements are greatly influenced by the extent to which a resin cures and the degree of cure is an important factor in the success of the inlay. The purpose of this study was to evaluate the influence of porcelain thickness and exposure time on the polymerization of resin cements by measuring the microhardness and the degree of conversion, to investigate the nature of the correlation between two methods mentioned above, and to determine the exposure time needed to harden resin cements through various thickness of porcelain. The degree of resin cure was evaluated by the measurements of microhardness [Vickers Hardness Number(VHN)] and degree of conversion(DC), as determined by Fourier Transform Infrared Spectroscopy(FTIR) on one light cured composite resin [Z-100(Z)] and three dual cured resin cements [Duo cement(D), 3M Resin cement(R), and Dual cement(DA)] which were cured under porcelain discs thickness of 0mm, 1mm, 2mm, 3mm with light exposure time of 40sec, 80sec, 120sec, and regression analysis was performed to determine the correlation between VHN and DC. In addition, to determine the exposure time needed to harden resin cements under various thickness of porcelain discs, the changes of the intensity of light attenuated by 1mm, 2mm, and 3mm thickness of porcelain discs were measured using the curing radiometer. The results were obtained as follows ; 1. The values of microhardness and the degree of conversion of resin cements without intervening porcelain discs were 31~109VHN and 51~63%, respectively. In the microhardness Z was the highest, followed by R, D, DA. In the degree of conversion, D and DA was significantly greater than Z and R(p<0.05). 2. The microhardness and the degree of conversion of the resin cements decreased with increasing thickness of porcelain discs, and increased with increasing exposure time, D and R showed great variation with inlay thickness and exposure time, whereas, DA showed a little variation. 3. The intensity of light through 1mm, 2mm, and 3mm porcelain inlays decreased by 0.43, 0.25, and 0.14 times compared to direct illumination, and the respective needed exposure times are 53 sec, 70 sec, and 93 sec. In D and R, 40 sec of light irradiation through 2mm porcelain disc and 80 sec of light irradiation through 3mm porcelain disc were not enough to complete curing. 4. The microhardness and the degree of conversion of the resin cements showed a positive correlationship(R=0.791~0.965) in the order of R, D, Z, DA. As the thickness of porcelain discs increased, the decreasing pattern of microhardness was different from that of the degree of conversion, however.

  • PDF

라미네이트 도재와 복합레진 시멘트의 결합강도에 관한 연구 (A STUDY ON THE VOND STRENGTH OF PORCELAIN LAMINATE AND COMPOSITE RESIN CEMENTS)

  • 김성일;임호남;박남수
    • 대한치과보철학회지
    • /
    • 제29권1호
    • /
    • pp.91-109
    • /
    • 1991
  • The purpose of this study were to comfirm the effects of the thickness and kinds of porcelain, etchants, illumination time, elapsed time for the measurement, and chemical cure component to the bond strength of porcelain laminate and composite resin cement, and to compare the effects between the light cured resin and the dual cured resins. The etched porcelain surface, the sectioned surface crossing porcelain and resin after bonding, and the debonded surfaces were observed by the SEM. One product of laminate porcelain powder, one light cured resin and two dual cured resins were selected. Each resin cements are lightened through the thin porcelain disc which was cut from cylindrical porcelain specimen by the diamond saw, and by the light through the porcelain disc they were bonded. Changes of thickness and kinds of porcelain, etchants, illumination time, and the elapsed time for the measurement were considered as variables for the bond strength. And the bond strength of porcelain and dual cured resins under the conditions of autopolymerization or the removal of chemical cure component were measured and compared. Bond strength were measured by shear stress. The etched surface, the cross-sectioned surface, and the debonded surface of porcelain or resin were observed by SEM. On the summary of this study, the following conclusions can be stated; 1. Bond strength of light cured resin was decreased inversely by the thickened porcelain laminate and showed the lowest value to the masking dentin porcelain among 4 kinds of porcelain powder. 2. Bond strength of autopolymerization of dual cured resin without illumination in dark chamber were from 75% to 98% to the data of dual cured resin with illumination. 3. Bond strength of dual cured resin used without chemical cured components were same to them of light cured resin. 4. Cross-sectioned surface treated by silane did not show the gap between the porcelain and resin. 5. Illumination over 80 seconds did not make the significant increase of bond strength on all kinds of resin.

  • PDF

아르곤레이저를 이용한 레진인레이 하부의 레진 시멘트 및 광중합형 복합레진 중합 (THE MICROHARDNESS OF RESTORATIVE COMPOSITE AND DUAL-CURED COMPOSITE CEMENT UNDER THE PRECURED COMPOSITE OVERLAY)

  • 박성호;이창규
    • Restorative Dentistry and Endodontics
    • /
    • 제25권1호
    • /
    • pp.109-115
    • /
    • 2000
  • This study was designed to evaluate the microhardness of restorative composite resin and dual-cured composite resin cement which were light cured through the 1.5mm thickness composite overlay. For restorative materials, Z100 and Tetric Ceram were used. For dual cured composite cements, Variolink II((VL II) of three consistency (low, high, ultra high) were used. To determine the optimal microhardness of Z100, Tetric Ceram and Variolink II, each material was packed into the 1mm thickness teflon mold without composite overlay and light cured for 60 seconds. Then the microhardnesses of each sample were measured, averaged and regarded as optimal hardness of each material. To evaluate the microhardness of restorative composite resin and dual-cured composite resin cement which were light cured through the 1.5mm thickness composite overlay, the composites were packed into 1mm thickness teflon mold, coverd with celluloid strip, and then precured composite overlay which was made of Targis(Ivoclar/Vivadent, Liechtenstein) was positioned. 2 types of visible light curing machine, the power density of one of which was 400$mW/cm^2$ and the other was 900$mW/cm^2$, and one type of argon laser were used to cure the restorative composite and dual cured cement. For each group, 10 sample were assigned. The light curing tip was positioned over the composite overlay and light cured for 1min., 2min. or 3min with visible light curing machine or 15sec, 30 sec, 45sec, and 60 sec with argon laser. The Vickers hardnesses of upper and lower surface of Z100, Tetric Ceram, and 3 types of VL II cement were measured. When the 900 $mW/cm^2$ curing light was used, 2min. was needed for optimal curing of Z100 and Tetric Ceram. Variolink II did not be cured optimally even though the curing time was extended to 3min. When 400$mW/cm^2$ curing light was used, 3min. was necessary for Z100, whereas 3min. was not enough for Tetric Ceram. Variolink II was not cured optimally even though the curing time was extended to 3min. When argon laser was used, Z100, Tetric Ceram and Variolink II were not cured optimally in 60 seconds.

  • PDF

투명 fiber 포스트를 통한 광중합형 접착레진의 중합 반응 (CURING REACTION OF THE LIGHT CURED FLOWABLE COMPOSITE RESINS THROUGH THE ENDODONTIC TRANSLUCENT FIBER POST)

  • 안석;박상원;양홍서;방몽숙;박하옥
    • 대한치과보철학회지
    • /
    • 제44권1호
    • /
    • pp.1-9
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the efficacy and substitute possibility of a newly developed flowable composite resins as a luting cement for translucent fiber post. Material & Method: Two kinds of 12 mm translucent fiber Post (D.T. Light-Post (Bisco, USA) and FRC Postec (Ivoclar vivadent, Liechtenstein) was inserted into the teflon mold (7 mm diameter, 9 mm long) and Filtek-Flow (3M ESPE. USA), a light activated flowable composite resin, was polymerized for 60 seconds through the post. Also, the post was cut from the tip to 9 mm, 6 mm, 3 mm, and Filtek-Flow was light cured according to each length. For comparison, 60 seconds light-cured and 24 hours self-cured two dual cured resin cement (Duo-cement (Bisco, USA) and 2 Panavia-F (Kuraray, Japan)) samples were prepared as control group. Also cavities (1 mm in width, 1 mm in depth and 12 mm in length) were prepared using acrylic plate and aluminum bar, and flowable composite resin was flied and light cured by the diffused light from the fiber post's side wall. The degree of polymerization was measured according to the distance from curing light using Vickers' hardness test. Result: Within the limitation of this study, the following conclusions were drawn: 1. Vickers' hardness of light cured dual cured resin cement and flowable composite resin decreased from Panavia-F, Filtek-Flow and Duo-cement accordingly (p<0.05). In the dual curing resin cement, light curing performed group showed higher surface hardness value than self cured only group (p<0.05). 2. Surface hardness ratio (light cured through fiber post /directly light cured) of D.T. Light-Post using Filtek-Flow showed about 70% in the 6 mm deep and about 50% in the 12 mm deep FRC Postec showed only 40% of surface hardness ratio. 3. Surface hardness ratio by diffused light from the post's side wall showed about 50% at 6 mm and 9 mm deep, and about 40% at 12 mm deep in D.T. Light-Post. However, FRC Postec showed about 40% at 6 mm deep, and almost no polymerization in 9 mm and 12 mm deep.

중합조건에 따른 dual cured resin cement의 열분석적 연구 (THERMAL ANALYSIS OF THE DUAL CURED RESIN CEMENTS ACCORDING TO CURING CONDITION)

  • 이인복;정관희;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제24권2호
    • /
    • pp.265-285
    • /
    • 1999
  • The purposes of this investigation were to observe the reaction kinetics of five commercial dual cured resin cements (Bistite, Dual, Scotchbond, Duolink and Duo) when cured under varying thicknesses of porcelain inlays by chemical or light activation and to evaluate the effect of the porcelain disc on the rate of polymerization of dual cured resin cement during light exposure by using thermal analysis. Thermogravimetric analysis(TGA) was used to evaluate the weight change as a function of temperature during a thermal program from $25{\sim}800^{\circ}C$ at rate of $10^{\circ}C$/min and to measure inorganic filler weight %. Differential scanning calorimetry(DSC) was used to evaluate the heat of cure(${\Delta}H$), maximum rate of heat output and peak heat flow time in dual cured resin cement systems when the polymerization reaction occured by chemical cure only or by light exposure through 0mm, 1mm, 2mm and 4mm thickness of porcelain discs. In 4mm thickness of porcelain disc, the exposure time was varied from 40s to 60s to investigate the effect of the exposure time on polymerization reaction. To investigate the effect on the setting of dual cured resin cements of absorption of polymerizing light by porcelain materials used as inlays and onlays, the change of the intensity of the light attenuated by 1mm, 2mm and 4mm thickness of porcelain discs was measured using curing radiometer. The results were as follows 1. The heat of cure of resin cements was 34~60J/gm and significant differences were observed between brands (P<0.001). Inverse relationship was present between the heat of reaction and filler weight % the heat of cure decreased with increasing filler content (R=-0.967). The heat of reaction by light cure was greater than by chemical cure in Bistite, Scotchbond and Duolink(P<0.05), but there was no statistically significant difference in Dual and Duo(P>0.05). 2. The polymerization rate of chemical cure and light cure of five commercially available dual cured resin cements was found to vary greatly with brand. Setting time based on peak heat flow time was shortest in Duo during chemical cure, and shortest in Dual during light cure. Cure speed by light exposure was 5~20 times faster than by chemical cure in dual cured resin cements. The dual cured resin cements differed markedly in the ratio of light and chemical activated catalysts. 3. The peak heat flow time increased by 1.51, 1.87, and 3.24 times as light cure was done through 1mm, 2mm and 4mm thick porcelain discs. Exposure times recommended by the manufacturers were insufficient to compensate for the attenuation of light by the 4mm thick porcelain disc. 4. A strong inverse relationship was observed between peak heat flow and peak time in chemical cure(R=0.951), and a strong positive correlations hip was observed between peak heat flow and the heat of cure in light cure(R=0.928). There was no correlationship present between filler weight % or heat of cure and peak time. 5. The thermal decomposition of resin cements occured primarily between $300^{\circ}C$ and $480^{\circ}C$ with maximum decomposition rates at $335^{\circ}C$ and $440^{\circ}C$.

  • PDF

Cementation technique in indirect tooth colored restoration

  • Park, Sung-Ho
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2001년도 추계학술대회(제116회) 및 13회 Workshop 제3회 한ㆍ일 치과보존학회 공동학술대회 초록집
    • /
    • pp.595-595
    • /
    • 2001
  • As the interest for esthetic restoration is increasing, the usage of composite resin is increasing. The usage of composite resin is not limited to anterior teeth but is spreading to posterior area using direct & indirect methods. Generally, dual or chemical cure resin cement has been used for setting composite or porcelain inlay restoration. However, chemical cure resin cement has limited working time and it's difficult to remove excess cement from the tooth and the restoration. The dual cured composite is also difficult to remove from the tooth surface.(omitted)

  • PDF

The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement

  • Cetindemir, Aydan Boztuna;Sermet, Bulent;Ongul, Deger
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권4호
    • /
    • pp.291-299
    • /
    • 2018
  • PURPOSE. To assess the degree of conversion (DC) and light irradiance delivered to light-cured and dual-cured cements by application of different light sources through various types of monolithic computer-aided design and computer-aided manufacturing (CAD/CAM) materials. MATERIALS AND METHODS. RelyX Ultimate Clicker light-cured and dual-cured resin cement specimens with 1.5-mm thicknesses (n=300, 10/group), were placed under four types of crystalline core structure (Vita Enamic, Vita Suprinity, GC Ceresmart, Degudent Prettau Anterior). The specimens were irradiated for 40 seconds with an LED Soft-Start or pulse-delay unit or 20 seconds with a QTH unit. DC ratios were determined by using Fourier transform infrared spectroscopy (FTIR) after curing the specimen at 1 day and 1 month. The data were analyzed using the Mann-Whitney U test (for paired comparison) and the Kruskal-Wallis H test (for multiple comparison), with a significance level of P<.05. RESULTS. DC values were the highest for RelyX Ultimate Clicker light-cure specimens polymerized with the LED Soft-Start unit. The combination of the Vita Suprinity disc and RelyX Ultimate Clicker dual-cure resin cement yielded significantly higher values at both timepoints with all light units (all, P<.05). CONCLUSION. Within the limitations of this study, we conclude that the DC of RelyX Ultimate Clicker dual-cure resin cement was improved significantly by the use of Vita Suprinity and the LED Soft-Start light unit. We strongly recommend the combined use of an LED light unit and dual-cure luting cement for monolithic ceramic restorations.