DOI QR코드

DOI QR Code

Microhardness of resin cements after light activation through various translucencies of monolithic zirconia

  • Pechteewang, Sawanya (Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University) ;
  • Salimee, Prarom (Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University)
  • 투고 : 2021.05.12
  • 심사 : 2021.08.20
  • 발행 : 2021.08.31

초록

PURPOSE. This study aimed to investigate the Vickers Hardness Number (VHN) of light- and dual cured resin cements cured through monolithic zirconia specimens (VITA YZ) of various translucencies: translucent (T); high translucent (HT); super translucent (ST); and extra translucent (XT) at 0, 24, and 48 h after curing. MATERIALS AND METHODS. Four zirconia specimens from each translucency were prepared. Two light-cured resin cements (Variolink N LC; VL and RelyX Veneer; RL) and two dual-cured resin cements (Variolink N DC; VD and RelyX U200; RD) were used. The cement was mixed and loaded in a mold and cured for 20 s through the zirconia specimen. The upper surface of cements was tested for VHN using a microhardness tester at 0, 24, and 48 h after curing. The VHN were analyzed using two-way repeated, Brown-Forsythe ANOVA with Games Howell post-hoc analysis and independent t-tests (P < .05). RESULTS. All cements showed significantly higher VHN from 0 h to 24 h (P < .001). At 48 h, the VHN of light-cured cements were significantly lower when cured under the T groups than under XT groups (P = .001 in VL, P = .014 in RL). At each post curing time of each translucency, VD showed higher VHN than VL (P < .05), and RD also showed higher VHN than RL (P < .05). CONCLUSION. The translucency of zirconia has an effect on the VHN for light-cured resin cements, but has no effect on dual-cured resin cements. Dual-cured resin cement exhibited higher VHN than the light-cured resin cement from the same manufacturer. All resin cements showed significantly higher VHN from 0 h to 24 h.

키워드

과제정보

The authors are grateful to Prof. Martin Tyas, Melbourne Dental School, for the manuscript revision, Asst. Prof. Soranun Chantarangsu and Dr. Nareudee Limpuangthip, Chulalongkorn University, for their assistance in statistical analysis.

참고문헌

  1. Akagawa Y, Hosokawa R, Sato Y, Kamayama K. Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years' function in monkeys: a clinical and histologic study. J Prosthet Dent 1998;80:551-8. https://doi.org/10.1016/S0022-3913(98)70031-9
  2. Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68:322-6. https://doi.org/10.1016/0022-3913(92)90338-B
  3. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013;57:236-61. https://doi.org/10.1016/j.jpor.2013.09.001
  4. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  5. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent 2009;4:130-51.
  6. Koenig V, Vanheusden AJ, Le Goff SO, Mainjot AK. Clinical risk factors related to failures with zirconia-based restorations: an up to 9-year retrospective study. J Dent 2013;41:1164-74. https://doi.org/10.1016/j.jdent.2013.10.009
  7. McLaren EA, Lawson N, Choi J, Kang J, Trujillo C. New high-translucent cubic-phase-containing zirconia: clinical and laboratory considerations and the effect of air abrasion on strength. Compend Contin Educ Dent 2017;38:e13-6.
  8. Xiong Y, Fu Z, Pouchly V, Maca K, Shen Z. Preparation of transparent 3y-tzp nanoceramics with no low-temperature degradation. J Am Ceram Soc 2014;97:1402-6. https://doi.org/10.1111/jace.12919
  9. Zhang F, Vanmeensel K, Batuk M, Hadermann J, Inokoshi M, Van Meerbeek B, Naert I, Vleugels J. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater 2015;16:215-22. https://doi.org/10.1016/j.actbio.2015.01.037
  10. Zhang H, Li Z, Kim B-N, Morita K, Yoshida H, Hiraga K, Sakka Y. Effect of alumina dopant on transparency of tetragonal zirconia. J Nanomater 2012;2012:1-5.
  11. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:e327-37. https://doi.org/10.1016/j.dental.2016.09.025
  12. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30:1195-203. https://doi.org/10.1016/j.dental.2014.08.375
  13. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97:140-7. https://doi.org/10.1177/0022034517737483
  14. Ghosh A, Suri AK, Pandey M, Thomas S, Rama Mohan TR, Rao BT. Nanocrystalline zirconia-yttria system-a raman study. Mater Lett 2006;60:1170-3. https://doi.org/10.1016/j.matlet.2005.10.102
  15. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Narhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater 2015;31:1180-7. https://doi.org/10.1016/j.dental.2015.06.016
  16. Shahmiri R, Standard OC, Hart JN, Sorrell CC. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J Prosthet Dent 2018;119:36-46. https://doi.org/10.1016/j.prosdent.2017.07.009
  17. Blatz MB, Phark JH, Ozer F, Mante FK, Saleh N, Bergler M, Sadan A. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. Clin Oral Investig 2010;14:187-92. https://doi.org/10.1007/s00784-009-0278-0
  18. Peutzfeldt A, Asmussen E. Adhesive systems: effect on bond strength of incorrect use. J Adhes Dent 2002;4:233-42.
  19. Re D, Augusti D, Sailer I, Spreafico D, Cerutti A. The effect of surface treatment on the adhesion of resin cements to Y-TZP. Eur J Esthet Dent 2008;3:186-96.
  20. Pekkan G, Saridag S, Pekkan K, Helvacioglu DY. Comparative radiopacity of conventional and full-contour Y-TZP ceramics. Dent Mater J 2016;35:257-63. https://doi.org/10.4012/dmj.2015-194
  21. Ilie N, Stawarczyk B. Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions. J Prosthet Dent 2015;113:114-21. https://doi.org/10.1016/j.prosdent.2014.08.013
  22. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Lassila LV, Vallittu PK, Narhi TO. Degree of conversion of dual-polymerizing cements light polymerized through monolithic zirconia of different thicknesses and types. J Prosthet Dent 2015;114:103-8. https://doi.org/10.1016/j.prosdent.2015.02.007
  23. Sen N, Isler S. Microstructural, physical, and optical characterization of high-translucency zirconia ceramics. J Prosthet Dent 2020;123:761-8. https://doi.org/10.1016/j.prosdent.2019.05.004
  24. Church TD, Jessup JP, Guillory VL, Vandewalle KS. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen Dent 2017;65:48-52.
  25. Manziuc MM, Gasparik C, Negucioiu M, Constantiniuc M, Alexandru B, Vlas I, Dudea D. Optical properties of translucent zirconia: a review of the literature. Eurobiotech J 2019;3:45-51. https://doi.org/10.2478/ebtj-2019-0005
  26. Spitznagel FA, Boldt J, Gierthmuehlen PC. CAD/CAM ceramic restorative materials for natural teeth. J Dent Res 2018;97:1082-91. https://doi.org/10.1177/0022034518779759
  27. Novais VR, Raposo LH, Miranda RR, Lopes CC, Simamoto PCJ, Soares CJ. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes. J Appl Oral Sci 2017;25:61-8. https://doi.org/10.1590/1678-77572016-0221
  28. Alovisi M, Scotti N, Comba A, Manzon E, Farina E, Pasqualini D, Michelotto Tempesta R, Breschi L, Cadenaro M. Influence of polymerization time on properties of dual-curing cements in combination with high translucency monolithic zirconia. J Prosthodont Res 2018;62:468-72. https://doi.org/10.1016/j.jpor.2018.06.003
  29. Ferracane JL. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1985;1:11-4. https://doi.org/10.1016/S0109-5641(85)80058-0
  30. Hofmann N, Papsthart G, Hugo B, Klaiber B. Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. J Oral Rehabil 2001;28:1022-8. https://doi.org/10.1046/j.1365-2842.2001.00809.x
  31. Reges RV, Moraes RR, Correr AB, Sinhoreti MA, Correr-Sobrinho L, Piva E, Nouer PR. In-depth polymerization of dual-cured resin cement assessed by hardness. J Biomater Appl 2008;23:85-96. https://doi.org/10.1177/0885328207086316
  32. De Souza G, Braga RR, Cesar PF, Lopes GC. Correlation between clinical performance and degree of conversion of resin cements: a literature review. J Appl Oral Sci 2015;23:358-68. https://doi.org/10.1590/1678-775720140524
  33. Yan YL, Kim YK, Kim KH, Kwon TY. Changes in degree of conversion and microhardness of dental resin cements. Oper Dent 2010;35:203-10. https://doi.org/10.2341/09-174-L
  34. Lopes Cde C, Rodrigues RB, Silva AL, Simamoto Junior PC, Soares CJ, Novais VR. Degree of conversion and mechanical properties of resin cements cured through different all-ceramic systems. Braz Dent J 2015;26:484-9. https://doi.org/10.1590/0103-6440201300180
  35. Camposilvan E, Leone R, Gremillard L, Sorrentino R, Zarone F, Ferrari M, Chevalier J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater 2018;34:879-90. https://doi.org/10.1016/j.dental.2018.03.006
  36. Barbon FJ, Moraes RR, Calza JV, Perroni AP, Spazzin AO, Boscato N. Inorganic filler content of resin-based luting agents and the color of ceramic veneers. Braz Oral Res 2018;32:e49.
  37. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 2002;87:642-9. https://doi.org/10.1067/mpr.2002.125179
  38. Rangreez TA, Mobin R. Polymer composites for dental fillings. In: Asiri AM, Inamuddin, Mohammad A, editors. Applications of nanocomposite materials in dentistry. Cambridge, UK; Woodhead Publishing; 2019. p. 205-24.
  39. Ciccone-Nogueira JC, Borsatto MC, de Souza-Zaron WC, Ramos RP, Palma-Dibb RG. Microhardness of composite resins at different depths varying the post-irradiation time. J Appl Oral Sci 2007;15:305-9. https://doi.org/10.1590/S1678-77572007000400012
  40. Tarumi H, Imazato S, Ehara A, Kato S, Ebi N, Ebisu S. Post-irradiation polymerization of composites containing bis-GMA and TEGDMA. Dent Mater 1999;15:238-42. https://doi.org/10.1016/S0109-5641(99)00040-8
  41. Craig RG, Powers JM, Sakaguchi RL. Craig's restorative dental materials. 12th ed. St. Louis; Mosby Elsevier; 2006. p. 161-98.
  42. Marghalani HY. Post-irradiation vickers microhardness development of novel resin composites. J Mater Res 2010;13:81-7. https://doi.org/10.1590/S1516-14392010000100017
  43. Braga RR, Cesar PF, Gonzaga CC. Mechanical properties of resin cements with different activation modes. J Oral Rehabil 2002;29:257-62. https://doi.org/10.1046/j.1365-2842.2002.00821.x
  44. Kumbuloglu O, Lassila LV, User A, Vallittu PK. A study of the physical and chemical properties of four resin composite luting cements. Int J Prosthodont 2004;17:357-63.
  45. Lu H, Mehmood A, Chow A, Powers JM. Influence of polymerization mode on flexural properties of esthetic resin luting agents. J Prosthet Dent 2005;94:549-54. https://doi.org/10.1016/j.prosdent.2005.09.016
  46. Guiraldo RD, Consani S, Consani RL, Berger SB, Mendes WB, Sinhoreti MA. Light energy transmission through composite influenced by material shades. Bull Tokyo Dent Coll 2009;50:183-90. https://doi.org/10.2209/tdcpublication.50.183
  47. Moreno MBP, Costa AR, Rueggeberg FA, Correr AB, Sinhoreti MAC, Ambrosano GMB, Consani S, Correr Sobrinho L. Effect of ceramic interposition and post-activation times on knoop hardness of different shades of resin cement. Braz Dent J 2018;29:76-81. https://doi.org/10.1590/0103-6440201801635
  48. Bandeca MC, El-Mowafy O, Saade EG, Rastelli ANS, Bagnato VS, Porto-Neto ST. Changes on degree of conversion of dual-cure luting light-cured with blue LED. Laser Phys 2009;19:1050-5. https://doi.org/10.1134/S1054660X09050302
  49. Fonseca RG, Cruz CA, Adabo GL. The influence of chemical activation on hardness of dual-curing resin cements. Braz Oral Res 2004;18:228-32. https://doi.org/10.1590/S1806-83242004000300009