• Title/Summary/Keyword: drying speed

Search Result 168, Processing Time 0.029 seconds

Evaluation of Bending Property on Principal Domestic Speciees (주요 국산수종의 휨가공성 평가)

  • Jung, In-Suk;Lee, Weon-Hee;Chang, Jun-Pok;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • This study was carried out to evaluate bending property on principal domestic species such as sargent cherry(Prunus sargentii), bitter wood(Picrasma quassioides), horn beam(Carpinus laxiflora), cork oak(Quercus variabilis), birch(Betula schmidtii), painted maple(Acer mono), basswood(Tilia amurensis), red pine(Pinus densiflora), pitch pine(Pinus rigtda), royal pawlonia(Paulownia tomentosa) by microwave heating. In this study, radius of curvature(ROC) for bending process was classified by radius of curvature(ROC) of bending plate such as 4 cm, 6 cm, and 10 cm, and thickness of metal-strap(TMS) was 0.6 mm and 0.8 mm. Bending process was successfully operated for 100 percent in bitter wood, horn beam, birch and painted maple. On the other hand, there was a success rate of 58 percent in sargent cherry and 83 percent in cork oak and 29 percent in basswood and 8 percent in royal pawlonia which is the worst bending property. All specimens of basswood and royal pawlonia were broken at 4 cm of ROC. Success rate of bending property was shown 44 percent in red pine and 56 percent in pitch pine. TMS has an effect on only drying speed in drying process than difficulty and facility of bending property. It was considered that the thinner TMS in drying process is the faster in drying speed of bent wood.

Studies on Relations between High Solid Coating and Quality Changes(II) - Effect of high solid coating on coated paper properties - (고농도 도공과 품질변화의 상관성 연구(2보) -도공지의 품질과 고농도 도공의 효과-)

  • Lee, Yong-Kyu;Yoo, Sung-Jong;Cho, Byoung-Uk;Kim, Yong-Sik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.3
    • /
    • pp.52-59
    • /
    • 2007
  • This paper confirms that high solid coating can increase coating speed and reduce drying cost. Low solid coating color with the synthetic thickener and high solid coating color with the rheology modifier and with higher ratio of GCC were prepared. Coated paper was then produced with an industrial coater, varying coating speed and dryer temperature in order to keep the moisture content of the coated paper constant. Coating color concentration was able to be increased from 66% to 69% and from 68% to 71% without an adverse effect on coating color rheology. With a help of the rheology modifier, the increased ratio of GCC in high solid coating did not show harmful effects on the coated paper quality.

Impact of Drying Temperature in High-Loading Positive Electrode Fabrication Process for Lithium-ion Batteries (리튬이온 이차전지용 고로딩 양극 제조공정에서 건조온도의 영향에 대한 연구)

  • Min Jin Kim;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • Among the electrode manufacturing processes for lithium-ion batteries, the drying process is crucial for production speed and process cost. Particularly, as the loading level of the electrode increases to enhance the energy density of the battery, optimizing process conditions for electrode drying becomes more critical. In this study, we compared the drying time and electrochemical performance of the positive electrode prepared at different drying temperatures. LiNi0.6Co0.2Mn0.2O2 (NCM622) was used as the active material and manufactured under various drying temperature conditions ranging from 120 ℃ to 210 ℃ at loading levels of 2.5 and 4.5 mAh cm-2. The physical and electrochemical properties of the electrodes were compared. As the loading level of the electrode increases, the drying time of the electrode also increases, but this time can be reduced by increasing the drying temperature. The drying temperature used in manufacturing the NCM622 positive electrode does not significantly affect the electrochemical performance but drying above 210 ℃ resulted in an increase in the volume resistivity of the electrode and a decrease in electrochemical performance. Accordingly, in the manufacture of high-loading electrodes, the drying temperature was increased to 190 ℃ to shorten the electrode manufacturing time without a loss of performance.

A Numerical Study on the Improvement of the Performance of a Vehicle Paint Drying Process (자동차 도장 건조 공정의 건조 성능 향상을 위한 수치해석 연구)

  • Choi, Jongrak;Hur, Nahmkeon;Kim, Dongchoul;Kim, Hee-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.867-874
    • /
    • 2012
  • In the present study, three-dimensional transient numerical simulations were carried out to improve the performance of a vehicle paint drying process. In order to describe the movement of a vehicle, the techniques of moving boundary condition and multiple reference flames (MRF) were used. For the validation of the numerical analysis, the predicted temperature on the surface of a vehicle was compared to the experimental data, and a good agreement was achieved. With validated numerical procedure, various operating conditions of the temperature and the flow rate of the supply air were investigated to improve the drying performance of the facility. It is shown that the optimization of the operating condition can lead to energy savings and faster line speed of the production.

Implementation of Low Power Drying System with Bluetooth Communication (블루투스 통신을 갖는 저전력 건조 시스템 구현)

  • Kim, Young-Bin;Ryu, Conan.K.R
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.626-629
    • /
    • 2021
  • Recent home appliances requires convenience and low-power consumption. A convenient devices should be simple to control while having several functions. Intelligent sensors and utilization technologies are required to reduce energy consumption. This paper provides a smart drying system with Bluetooth communication function and energy reduction function. Design a control system that uses the Bluetooth function so that the smartphone monitors the drying control and the internal humidity condition. By detecting the humidity inside the dryer and controlling the speed of the motor, it has an energy-saving function.

  • PDF

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF

Hay Preparation Technology for Sorghum×Sudangrass Hybrid Using a Stationary Far-Infrared Dryer (정치식 원적외선 건조기를 이용한 수수×수단그라스 교잡종의 건초 조제 기술 연구)

  • Jong Geun Kim;Hyun Rae Kim;Won Jin Lee;Young Sang Yu;Yan Fen Li;Li Li Wang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.22-27
    • /
    • 2023
  • This experiment was conducted to confirm the possibility of preparing Sorghum×sudangrass hybrid artificial hay using far-infrared rays in Korea. The machine used in this experiment is a drying device based on far-infrared rays, and is designed to control temperature, air flow rate, far-infrared radiation amount, and air flow speed. The Sorghum×sudangrass hybrids harvested in late September were wilted in the field for one day, and a drying test was performed on them. Conditions for drying were performed by selecting a total of 7 conditions, and each condition induced a change in radiation amount in a single condition (42%) and two steps (4 treatments) and three steps (2 treatments). The speed of the air flow in the device was fixed at 60 m/s, and the run time was changed to 30, 60, and 90 minutes. The average dry matter (DM) content was 82.84%. The DM content was 59.94 and 76.91%, respectively, in drying conditions 1 and 3, which were not suitable for hay. In terms of drying rate, it was significantly higher than 80% in the 5, 6 and 7 treatment, and power consumption was slightly high with an average of 5.7 kw/h. As for the feed value according to each drying condition, the crude protein (CP) content increased as the drying time increased, and there was no significant difference between treatments in ADF, NDF, IVDMD and TDN content. In terms of RFV, treatment 1, which is a single condition, was significantly lower than the complex condition. Through the above results, it was determined that the drying conditions 4 and 5 were the most advantageous when considering the drying speed, power consumption, and quality.

Physicochemical Characteristics of Sangju Traditional Dried Persimmons during Drying Process (상주 전통곶감의 제조과정 중 이화학적 품질특성)

  • 강우원;김종국;오상룡;김준한;한진희;양진무;최종욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.386-391
    • /
    • 2004
  • This study was performed to investigate change of quality characteristics on traditional dried Persimmons from Sangju varity regions (sun-dried, Namjang and Bokryong). Moisture contents on drying were decreased and constant at from 7th to 14th days drying periods and its periods were recognized to constructing second peel of dried persimmons. Constructed second peel were affected on quality characteristics of traditional dried Persimmons. Also, in case of semi-dried persimmons were processed at 45∼55% level of moisture content. Final products of semi -dried persimmons were estimated in 25th from initial drying periods. Changes of water activity were increased reducing speed at time of water content decreased, second feel constructing during drying persimmons were introduced to decreasing of water activity. Weights of dried Persimmons were quickly decreased in 21th drying periods and slowly decreased after that time. Weight changing and water evaporation of dried persimmons at the Namjang and Bokryong were slowy decreased and controled after 7∼14th in periods of constructing second feel of dried persimmons. Change of brix in dried persimmons have had in 18∼27% value at initial drying periods and quickly increased after 7∼14th in drying periods and have in high value of 40∼50% at 21th drying periods. At the texture of dried persimmons, hardness were decresed after 7∼14th in periods and effected on decreasing of water content, increasing of drying times. Sensory score of dried persimmons were highest score of color, sweetness and texture at dried persimmons of Namjang. Score of astringency, sourness and mold smell were highest at dried persimmons of Bokryong. Value of highest overall acceptance score was at dried Persimmons of Namjang.

Large hair dryer with Mechanism (메카니즘을 이용한 대형 헤어드라이어)

  • Baek, Ji-heon;Jeong, Sang-won;Hyeon, Hyo-won;Hyung, Dae-youl;Jin, Tae-seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.459-462
    • /
    • 2017
  • This paper, A large hair dryer was developed to shorten the drying time of the user's hair. The mechanism that determines the strength and stability of large hair dryer products is 'motor'. In a typical hair dryer to determine the wind speed using a 5V or 12V DC motor, Outer air vents are also great ways to use a long time, power consumption by a single blow. But, In the case of large hair dryers using multiple blows, the aim is to reduce the power consumption by increasing the intensity of the wind speed in a short time. Looking at the simulation results of a typical hair dryer, It was found that women spent an average of 20 minutes and that large hair dryers took an average of 5 minutes. This paper, In order to shorten the average drying time, it is necessary to determine the efficiency of the motor, the blow position of the outer frame, and the power consumption and studied for product development. As a result of the research and simulation, the power consumption is 0.8 times, the wind speed is 1.5 times, and the drying time is about 5 minutes. Therefore, it was found that the large hair dryer developed in this study can maximize the user 's average drying time and the efficiency of the motor.

  • PDF

Improved Drying Process for Electrodes in Production of Lithium-Ion Batteries for Electric Vehicles (전기자동차용 리튬이온 전지의 제조공정을 위해 개선된 극판 건조 기술)

  • Jang, Chan-Hee;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2018
  • An electric vehicle is an environmentally friendly vehicle because there is no exhaust gas, unlike gasoline automobiles. On the other hand, because the electric vehicle is driven by electric power charged in batteries, the distance to go through a single charge depends on the energy density of the batteries. Therefore, a lithium-ion battery with a high energy density is a good candidate for batteries in electric vehicles. Because the electrode is an essential component that governs the efficiency of a lithium-ion battery, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the drying process during the electrode manufacturing process is a critical process that has a significant influence on the performance. This paper proposes an innovative process for improving the efficiency and productivity of the drying process in electrode manufacturing and describe the equipment design method and development results. In particular, the design procedure and development method for enhancing the electrode adhesion power, atmospheric pressure superheated steam drying technology, and drying furnace slimming technologies are presented. As a result, high-speed drying technology was developed for battery electrodes through the world's first turbo dryer technology for mass production using open/integrated atmospheric pressure superheated steam. Compared to the conventional drying process, the drying furnace improved the productivity (Dry Lead Time $0.7min{\rightarrow}0.5min$).