• Title/Summary/Keyword: drying process

Search Result 1,287, Processing Time 0.026 seconds

The Experiment for the Technical Balance Work on the Automatic Silk Reeling Machine ( I ) (자동조사기 기술체계확립을 위한 시험 (I))

  • 최병희;송기언;유시환;김화연;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.13 no.2
    • /
    • pp.155-160
    • /
    • 1971
  • This experiment was carried out to investigate the cocoon reeling condiditions required to technical balance work on the automatic silk reeling machine. The results obtained were as follows. 1) Reasonable reeling velocity with regard to raw silk yield and to reeling efficiency varied according to cocoon reelability. It was observed to be about 150m/min on good reelability cocoon (850m of nonbreaking bave length), about 120m/min on medium reelability cocoon (650m of nonbreaking bave length) and from 90m/min to 120m/min on bad reelability cocoon (500m of nonbreaking bave length) 2) Low temperature drying of cocoon (T$_3$) improved the reelability of cocoon, but increased the reeling accidance with deteriorating the quality of raw silk more than the control(T$_1$) or high temperature drying of cocoon (T$_2$). No significant difference was observed in its raw silk yield and silk by-product with regard to cocoon drying temperature. 3) Incomplete drying of cocoon (T$_3$) improved the reelability of cocoon, but increased the reeling accidance with deteriorating the quality of raw silk more than the control(T$_1$) or over drying of cocoon(T$_2$). No significant difference was observed in its raw silk yield and silk by-product with regard to cocoon drying degree. It was cocoon drying condition of cocoon was the control(T$_1$) or high temperature(T$_2$) rather than low temperature (T$_3$) in cocoon drying process. Control (T$_1$) or over drying of cocoon (T$_2$) was adequate rather than incomplete drying of cocoon (T$_3$) for the improvement of the quality of raw silk on the automatic silk reeling process. 4) It was found that the reasonable cooking condition of cocoon was optimum cooking with 4$0^{\circ}C$ of reeling temperature or incomplete cooking with 45$^{\circ}C$ of the reeling temperature in the automatic silk reeling of the domestic cocoon.

  • PDF

Studies on the Press Drying and the Chemical Absorption of the Plywood Treated with Diammonium Phosphate (제2인산(第2燐酸)암모늄 처리합판(處理合板)의 약제흡수(藥劑吸收) 및 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.39-45
    • /
    • 1995
  • The plywoods commonly used as decorative interior materials for the construction are inflammable and so it is a causative factor for making fire accidents, resulting in the destruction of human life and personal properties. Indeed, it is, therefore, required to produce fire-retardant plywoods. In this study, a special grade of defect-free, Kapur plywood was used. Specimens were cut into 3- by 20cm dimensions from 120- by 240- by 0.33-cm panels(thin panel) or 120- by 240- by 0.5-cm panels(thick panel). Some specimens were treated with diammonium phosphate(DAP), but some were not treated with diammonium phosphate to use as control panels. Chemical absorption, drying curves, drying rates and dynamic Young's modulus were investigated. The results were summaries as follows; 1. The specimens were soaked into 19% diammonium phosphate solution by a full cell pressure process and the diammonium phosphate retained in the thin and thick plywoods was 1.409kg/$(30cm)^3$, 1.487kg/$(30cm)^3$, respectively. 2. Diammonium phosphate-treated plywoods were redried with press-drying process at one of either condition dried on the platen($115^{\circ}C$) for a period of time or dried on the platen($50^{\circ}C$) for 3 hrs plus in a dry-oven($30^{\circ}C$) for 24 hrs. or dried on the platen($60^{\circ}C$) for 2 hrs plus in a dry-oven($30^{\circ}C$) for 24 hrs. The drying rate of treated thin specimens dried at $60^{\circ}C$ plus $30^{\circ}C$ and $115^{\circ}C$ only was found to be 0.04 %/min. and 8.53 %/min. Similarly, the drying rate of treated thick specimens were 0.03 %/min. and 6.77 %/min. respectively. 3. It was evident that highly-significantly different drying rate of treated plywoods was observed between plywood thicknesses and platen temperatures and the rate was increased by elevating the platen temperature up to $115^{\circ}C$. Based on the two-way variance analysis, highly significant drying rate was observed from the interaction between plywood thicknesses and platen temperatures. 4. After redrying, the specimens were weighed and reconditioned to a constant weight in a facility maintained temperature ($20^{\circ}C$) and relative humidity(65%) prior to test dynamic Young's modulus. The test revealed that the thin specimens dried at the platen temperature of $50^{\circ}C$, $60^{\circ}C$, $115^{\circ}C$ and untreated specimens showed 1.070E+09 dyne/$cm^2$, 1.156E+09 dyne/$cm^2$, 1.243E+09 dyne/$cm^2$, and 1.052E+09 dyne/$cm^2$, respectively. Likewise, the thick specimens revealed 5.647E+09 dyne/$cm^2$ 5.670E+09 dyne/$cm^2$, 6.395E+09 dyne/$cm^2$ and 5.415E+09 dyne/$cm^2$, respectively. 5. It was evident that significantly different dynamic Young's modulus was observed between the plywood thickness and the platen temperature, but not in the two-way interaction between the plywood thickness${\times}$the platen temperature.

  • PDF

Analysis of Drying Efficiency for Circulating and Falling Movements on Indirected Drying Process of Food Waste (음식물류폐기물 간접건조과정에서의 순환 및 낙하이동에 따른 건조효율 평가)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.106-117
    • /
    • 2012
  • Indirected heating dryer is used as one of the food waste treatment technologies for the production of the drier material supplied to the recycling facilities or end user. This study investigated the effect on drying efficiency for the operation of rotating screw with the circulating and falling movements on indirected drying process of food waste. The screw operating condition showed higher drying efficiency despite of the shorter drying time compared to the screw non-operating condition. The moisture content decreased to 14.4% from the initial moisture content of 77.1% after drying 5 hours in the screw operating condition. On the other hand, in the screw non-operating condition, the moisture content decreased slightly to 35.6% after drying 16 hours. During the drying process, variations of the water evaporation rate and particle size showed different tendencies depending on the moisture content regions. In the higher moisture content region above the glue zone(moisture content of about 50%-60%), the particle size increased and the water evaporation rate reached the highest peak. In the range of glue zone, the particle size maximized while the water evaporation rate decreased sharply. In the lower moisture content region below the glue zone, the water evaporation rate and particle size both decreased at the same time. The particle size distribution was widely ranged from 25.0mm to 0.25mm in the screw operating condition while it was narrowly distributed in the screw non-operating condition from 25.0mm to 3.56mm, especially highly concentrated to 25.0mm. It was regarded that the hygroscopic, capillary and gravitational water evaporated more easily from the intra-particle during the circulating and falling movement caused by the rotating of the screw and the difference of the cohesional force of water within intra-particle depending on the moisture content regions. Comparing the effect of the circulating and falling movement on drying efficiency, the water evaporation rates per time and per weight of dry solid in the screw operating condition were higher about 364% and 356%, respectively, than those of the screw non-operating condition.

Modeling of Coking Process in a Coke Oven (코크스 공정에서의 열유동 현상 모델링)

  • Yang, Kwang-Heok;Yang, Won;Choi, Sang-Min
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1184-1189
    • /
    • 2004
  • Coking process is the thermal decomposition of bituminous coal with final temperature of about $900^{\circ}C$ Because coke plays important roles in ironmaking process in a blast furnace it's essential for developing modeling of coke oven. In this study, An unsteady 2-dimesional model is proposed to simulate coking process in a coke oven. In this model, gas and solid phase are assumed homogeneous continnum and solid bed is assumed as porous media . The model contains governing equations for the solid phase and the gas phase. Complicated phenomena such as swelling, softening, resolidification and shrinkage are neglected and mass loss by drying and devolatilization is reflected by generation of internal pores. Drying, devolatilization, heat transfer and generation of internal pores are also reflected in source terms. Calulated results are compared with experimental data

  • PDF

Conversion of Acidic Polysaccharide and Phenolic Compound of Changed Ginseng by 9 Repetitive Steaming and Drying Process, and Its Effects of Antioxidation (인삼의 구증구포에 의한 산성다당체, 페놀성화합물의 변환 및 항산화능)

  • Kim, Do-Wan;Lee, Yun-Jin;Min, Jin-Woo;Kim, Yu-Jin;Rho, Young-Deok;Yang, Deok-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.121-126
    • /
    • 2009
  • Korean ginseng (Panax ginseng C. A. Meyer) has been used as an important medicinal plant in the Orient for a long time. It has been claimed that ginseng has many beneficial bioactive effects on human health, such as antitumor, antistress, antiaging and enhancing immune functions. Red ginseng possibly have new ingredients converted during steaming and dry process from fresh ginseng. In this study, pharmacological efficacy and ingredient conversion of ginseng by 9 repetitive steaming and drying process were investigated measuring conversion efficiency of acidic-polysaccharide, phenolic compounds and inhibition of peroxide lipides. It was found that acidic-polysaccarides were increased by heat treatment. In addition, maltol of phenolic compounds, strong antioxidant, produced during the process of red ginseng by Maillard reaction. Acidic-polysaccarides and maltol were increased after the 1st and 3rd steaming and drying treatments, but they were decreased gradually after 5th, 7th, and 9th treatments. Antioxidant activity was increased as increasing treatment times of steaming and drying without significance. Effect of red ginseng extract on inhibition of peroxide was increased gradually until after the 7th treatment, but remarkably decreased after the 9th treatment.

Changes in the Process Efficiency and Product Properties of Pulp Mold by the Application of Oil Palm EFB (오일팜 EFB 섬유 적용에 따른 펄프몰드 공정효율 및 제품품질 변화)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The demand of environmental friendly packaging materials such as pulp mold has been increased. The application of the oil palm biomass, EFB (Empty Fruit Bunch) fiber as natural raw materials to the pulp mold could increase the usability of the pulp mold by the reduced production cost brought from the relatively low cost of EFB. The effects of the EFB(Empty Fruit Bunch) fibers on the properties of pulp mold and on the process efficiency were evaluated in this study. The pulp mold samples were prepared with mixture ONP (Old news paper) and EFB by using laboratory wet pulp molder. The changes in the drying efficiency were measured with the changes in the solid contents of pulp mold samples during drying process. The efficiency of the surface coating treatment on the pulp mold depending on the condition of the pulp mold samples were also evaluated in order to improve the water resistance properties of pulp mold. The addition of EFB increased the drying efficiency by providing the bulkier structure and the higher water contact angle, which indicated the better water resistance properties. The water resistance were improved by the surface coating treatments and the application of surface coating on the pulp mold at the higher moisture contents resulted in the higher improvement in the water resistance. The bulkier structure originated from the application of EFB fiber reduced the effects of the surface coating, which could be overcome by the control of surface coating process.

Conversion of Brown Materials, Crude Lipids, Crude Proteins and Aromatic Compounds of Changed Ginseng by 9 Repetitive Steaming and Drying Process (인삼의 구증구폭(九蒸九曝)에 의한 갈변물질, 조지방, 조단백 및 향기성분의 변화)

  • Kim, Do-Wan;Lee, Yun-Jin;Min, Jin-Woo;Lee, Bum-Soo;In, Jun-Gyo;Yang, Deok-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.333-339
    • /
    • 2008
  • Korean ginseng (Panax ginseng C. A. Meyer) has been used as an important medicinal plant in the Orient for a long time. It has been claimed that ginseng has many beneficial bioactive effects on human health, such as antitumor, antistress, antiaging and enhancing immune functions. Red ginseng possibly have new ingredients converted during steaming and dry process from fresh ginseng. Kujeungkupo method which means 9 repetitive steaming and drying process was used for the processes of green tea, Polygonatum odoratum, and Rehmanniae radix preparata. In this study, ingredient conversion of ginseng by 9 repetitive steaming and drying process were investigated measuring conversion efficiency of brown materials, crude lipids, crude proteins and aromatic compounds. Brown materials, as an antioxidant, in red ginseng were produced through non-enzymatic reaction by heat. Repetitive steaming and drying treatments on ginseng root contiunously increased the content of brown materials and the chromaticity. Crude lipids were degraded by heat and converted into volatile aromatic ingredients. Crude lipids were degraded and decreased by 0.52% after the 5th and 7th. Crude proteins were also decomposed and converted to amino acid. Crude proteins after the 9th treatment were decreased by more than 85% as increased times of treatments. A bicyclogermacrene as aromatic material was decreased as increased treatment times, while but a aromatic caramel was increased.

Emission Characteristics of VOCs in Drying Process for Plywood Manufacturing (합판 제조용 목재 건조공정에서의 휘발성 유기화합물(VOCs) 배출특성)

  • Jang, Jeong-Gook;Kim, Mi-Ran
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1381-1390
    • /
    • 2008
  • Emission characteristics of volatile organic compounds (VOCs) were investigated in the flue gas emitted from wood drying process for plywood manufacturing. The moisture content of raw timber was average 48%, and its density was $831.55kg/m^3$. But the moisture content of dried wood is needed less than around 10%, thus the moisture contents of flue gas should be remarkably high(about 18.2 V/V%). Therefore, the vapor in flue gas is equivalent to 320 ton-vapor/day when 1100 ton-wood/day is treated in the wood drying process. The temperature of flue gas ranges from $140^{\circ}C\;to\;150^{\circ}C$ in each dryer stack with exception of the input site of wood(about $110^{\circ}C$). The velocity of flue gas in each stack ranges from 1.7 to 9.7m/sec. In order to assess the concentrations and attribution rate of odorous compounds, it was analyzed about 40 VOCs in the flue gases. It was found that the major odorous compounds were 8 compounds, and the concentrations of major VOCs(ppm) were as follows; benzene: $0.054{\sim}0.052$, toluene: $1.011{\sim}2.547$, ethylbenzene: $0.472{\sim}2.023$, m,p-xylene: $0.504{\sim}3.245$, styrene: $0.015{\sim}0.148$, o-xylene : $0.271{\sim}1.097$, ethanol: $11.2{\sim}32.5$, ${\alpha}$-pinene: $0.908{\sim}10.578$, ${\beta}$-pinene: $0.982{\sim}14.278$. The attribution rate of terpenes (${\alpha}$-pinene, ${\beta}$-pinene) was about 60.56%, and that of aromatics and alcohols was about 22.77%, and 16.67%, respectively. It is suggested that the adequate control device should be used to control both the water soluble and non-soluble compounds because both compounds were mixed in flue gas.

Quality Characteristics of Grape Pomace with Different Drying Methods (건조방법에 따른 포도 가공부산물의 품질특성)

  • Yook, Hong-Sun;Kim, Kyoung-Hee;Jang, Soon-Ae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1353-1358
    • /
    • 2010
  • Improvement in the utilization of grape pomace, antioxidant activities and antioxidant compounds of grape pomace was analyzed to clarify the influence of drying method such as $80^{\circ}C$ hot air and freeze ($-70^{\circ}C$) drying process. For proximate composition, crude protein and fat contents of hot air drying sample were higher than freeze drying sample. The lightness and redness values of freeze drying sample were higher than hot air drying sample, but yellowness of hot air drying sample was higher. The contents of total polyphenols and anthocyanins were higher in freeze drying sample. DPPH radical scavenging activity and ABTS scavenging activity of freeze drying sample were higher than hot air drying sample. The reducing power and FRAP value of hot air drying sample was higher than freeze drying sample. The result indicated that freeze drying method is slightly better than hot air drying method for antioxidant compounds and antioxidant activity.

Development of the Vacuum Drying Process for the PWR Spent Nuclear Fuel Dry Storage (경수로 사용후핵연료 건식저장을 위한 진공건조공정 개발)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.435-443
    • /
    • 2016
  • This paper describes the development of a dry operation process for PWR spent nuclear fuel, which is currently stored in the domestic NPP's storage pool, using a dual purpose metal cask. Domestic NNPs have had experience with wet type transportation of PWR spent nuclear fuel between neighboring NPPs since the early 1990s, but no experience with dry type operation. For this reason, we developed a specific operation process and also confirmed the safety of the major cask components and its spent nuclear fuel during the dual purpose metal cask operation process. We also describe the short term operation process that was established to be completed within 21 hours and propose the allowable working time for each step (15 hours for wet process, 3 hours for drain process and 3 hours for vacuum drying process).